Skip to main content

Python library and app to extract images from DCM in private-eye format

Project description

Process DCM

Maintenance GitHub GitHub release (latest by date) GitHub Release PyPI Poetry Ruff pre-commit

About The Project

Python library and app to extract images from DCM files with metadata in private-eye format

Installation and Usage

pip install process-dcm
 Usage: process-dcm [OPTIONS] INPUT_DIR

 Process DICOM files in subfolders, extract images and metadata using parallel processing.
 Version: 0.2.1

╭─ Arguments ─────────────────────────────────────────────────────────────────────────────╮
│ *    input_dir      TEXT  Input directory containing subfolders with DICOM files.       │
│                           [default: None]                                               │
│                           [required]                                                    │
╰─────────────────────────────────────────────────────────────────────────────────────────╯
╭─ Options ───────────────────────────────────────────────────────────────────────────────╮
│ --image_format        -f      TEXT     Image format for extracted images (png, jpg,     │
│                                        webp). Defaults to: png                          │
│                                        [default: png]                                   │
│ --output_dir          -o      TEXT     Output directory for extracted images and        │
│                                        metadata. Defaults to: exported_data             │
│                                        [default: exported_data]                         │
│ --relative            -r               Save extracted data in folders relative to       │
│                                        _input_dir_.                                     │
│ --n_jobs              -j      INTEGER  Number of parallel jobs. Defaults to: 1          │
│                                        [default: 1]                                     │
│ --mapping             -m      TEXT     Path to CSV containing patient_id to study_id    │
│                                        mapping. If not provided and patient_id is not   │
│                                        anonymised, a 'patient_2_study_id.csv' file will │
│                                        be generated                                     │
│ --keep                -k      TEXT     Keep the specified fields (p: patient_key, n:    │
│                                        names, d: date_of_birth, D: year-only DOB, g:    │
│                                        gender)                                          │
│ --overwrite           -w               Overwrite existing images if found.              │
│ --quiet               -q               Silence verbosity.                               │
│ --version             -V               Prints app version.                              │
│ --install-completion                   Install completion for the current shell.        │
│ --show-completion                      Show completion for the current shell, to copy   │
│                                        it or customize the installation.                │
│ --help                -h               Show this message and exit.                      │
╰─────────────────────────────────────────────────────────────────────────────────────────╯

For Developers

To run this project locally, you will need to install the prerequisites and follow the installation section.

Prerequisites

This Project depends on the poetry.

  1. Install poetry, via homebrew or pipx:

    brew install poetry
    

    or

    pipx install poetry
    
  2. Don't forget to use the python environment you set before and, if using VScode, apply it there.

  3. It's optional, but we strongly recommend commitizen, which follows Conventional Commits

Installation

  1. Clone the repo

    git clone https://github.com/pontikos-lab/process-dcm
    cd process-dcm
    

Bumping Version

We use commitizen. The instructions below are only for exceptional cases.

  1. Using poetry-bumpversion. Bump the version number by running poetry version [part] [--dry-run] where [part] is major, minor, or patch, depending on which part of the version number you want to bump.

    Use --dry-run option to check it in advance.

  2. Push the tagged commit created above and the tag itself, i.e.:

    ver_tag=$(poetry version | cut -d ' ' -f2)
    git tag -a v"$ver_tag" -m "Tagged version $ver_tag"
    git push
    git push --tags
    

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

process_dcm-0.3.0.tar.gz (14.9 kB view details)

Uploaded Source

Built Distribution

process_dcm-0.3.0-py3-none-any.whl (14.6 kB view details)

Uploaded Python 3

File details

Details for the file process_dcm-0.3.0.tar.gz.

File metadata

  • Download URL: process_dcm-0.3.0.tar.gz
  • Upload date:
  • Size: 14.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.11.9 Linux/6.5.0-1025-azure

File hashes

Hashes for process_dcm-0.3.0.tar.gz
Algorithm Hash digest
SHA256 f38b14872339ca1098c51f2373bc7e673efabecbe6439682301f84c8117e0e7d
MD5 a907116310a1e296f5c8c3e9200ba884
BLAKE2b-256 63ded379e94b2029aa578e2c35782dee966e1e5d09d4970c05829bcf898b78b4

See more details on using hashes here.

File details

Details for the file process_dcm-0.3.0-py3-none-any.whl.

File metadata

  • Download URL: process_dcm-0.3.0-py3-none-any.whl
  • Upload date:
  • Size: 14.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.11.9 Linux/6.5.0-1025-azure

File hashes

Hashes for process_dcm-0.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 0df12a392e2d6203cf04d5c74df339e83f2e6d4fc88b4e25a9a001782211cd7e
MD5 ecf37c6484459909cb2c58a4edbe4876
BLAKE2b-256 80f1130a09622d5a509a816caace5cd7084c092ab95006d939bce534764d3057

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page