Skip to main content

Lightweight ML Deployment Platform

Project description

productionize - deploy ML models directly from Python [WIP]

Version License Status macOS

productionize is an open-source lightweight ML deployment tool.
You can containerize, deploy and ship your model, without ever
having to leave your beloved Python.


productionize is a Python library, which is hosted on PyPi. Currently, the functions are only supported on macOS. On the darwin platform you can therefore download the package using pip.

pip install productionize


Once the library is properly installed from PyPi, you can source it using your standard python import command. The core of the library are it's three main classes, those can be imported as follows:

# import lib
from productionize import workbench, product

Once the main classes are sourced, you can setup your very own workbench on your local machine. The workbench consists of several tools:

  • Docker: a container technology, which helps us to build Docker container, which are the quasi-standard in Machine Learning deployment. You can read more about Docker here.
  • VirtualBox: a driver that is needed to create a VM on you local machine to host the Kubernetes cluster, which is at the heart of the workbench. You can read more about VirtualBox here
  • Kubectl: a cli which allows you to interact with Kubernetes. You won't have to do that, but productionize is running Kubernetes commands in the background.
  • Minikube: a local implemenation of Kubernetes. Minikube runs on a VM, which is administrated by Virtualbox.

To setup the workbench, these tools need to be installed. You can do this, by simple running the setup() method of the workbench class. Once initiated you can call the method.

# initiate class
cluster = workbench()

# install and setup components

To fire up the entire workbench, you first need to login to Docker Desktop. This is installed for you, however, you need to have it running. You can easily do this, just search on your computer - if you have a Mac you just use spotlight search - for Docker and start the application.

Next you will have to sign in. If you don't have an account already, you can create one for free at <a href=">"Docker Hub. Which is a lot like GitHub, just for containers.

Once you did this, you are good to go on. You can now start the cluster using the start_cluster() method. This method allows you to set the resource quota for the cluster. Default are two CPUs and 2GB of memory.

# start the cluster
cluster.start_cluster(cpus = '2', memory = '2G')

To stop the cluster you can simply use the stop_cluster() method. This one just idles the cluster, but doesn't remove all the components.

# stop the cluster

To cleanly uninstall all the components, you can just run the uninstall() method and even specify which components to delete. The default is, that the components that existed on your machine before will be not removed.

# cleanly uninstall cluster components
cluster.uninstall(docker = None, kubectl = None, virtualbox = None, minikube = None, report = True)

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for productionize, version
Filename, size File type Python version Upload date Hashes
Filename, size productionize- (13.7 kB) File type Source Python version None Upload date Hashes View
Filename, size productionize- (14.5 kB) File type Wheel Python version py3 Upload date Hashes View

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page