A package to implement and extend the methods desribed in 'A General Approach to Progressive Learning'
Project description
ProgLearn
ProgLearn
(Progressive Learning) is a package for exploring and using progressive learning algorithms developed by the neurodata group.
- Installation Guide: http://proglearn.neurodata.io/install.html
- Documentation: http://proglearn.neurodata.io
- Tutorials: http://proglearn.neurodata.io/tutorials.html
- Source Code: http://proglearn.neurodata.io/reference/index.html
- Issues: https://github.com/neurodata/proglearn/issues
- Contribution Guide: http://proglearn.neurodata.io/contributing.html
Some system/package requirements:
- Python: 3.6+
- OS: All major platforms (Linux, macOS, Windows)
- Dependencies: keras, scikit-learn, scipy, numpy, joblib
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
proglearn-0.0.2.tar.gz
(17.9 kB
view details)
Built Distribution
proglearn-0.0.2-py3-none-any.whl
(24.1 kB
view details)
File details
Details for the file proglearn-0.0.2.tar.gz
.
File metadata
- Download URL: proglearn-0.0.2.tar.gz
- Upload date:
- Size: 17.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3.post20200330 requests-toolbelt/0.9.1 tqdm/4.44.1 CPython/3.7.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 61173cb6c0c6128e2c52814420e8b6eb1657fe81b9a9de502952a27f9c47de0e |
|
MD5 | aa985ae79227bbaa155588fd126aef11 |
|
BLAKE2b-256 | 39f239098d719994bcf97b0be857eb90d356896c82d2d2593d80e35de7ed3c9f |
File details
Details for the file proglearn-0.0.2-py3-none-any.whl
.
File metadata
- Download URL: proglearn-0.0.2-py3-none-any.whl
- Upload date:
- Size: 24.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3.post20200330 requests-toolbelt/0.9.1 tqdm/4.44.1 CPython/3.7.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | abb5a64a00f9e2e99c404f44d73906b6f7d2611eb737ccde6398a0736d492992 |
|
MD5 | 127109619d4d70d7ab13cbe4070bf4b4 |
|
BLAKE2b-256 | 342a01833b9755fec27b478154a2d90b0cbc6fb040b3143db9bdc66e7cc0f792 |