Skip to main content

PromptWeaver streamlines prompt development and management in Generative AI workflows

Project description

PromptWeaver is a Python library that streamlines prompt development and management in Generative AI workflows. It decouples prompts from Python scripts, enhancing portability, maintainability, and scalability for developers working with multiple LLMs or complex prompting workflows.

This project is currently under active development and may undergo significant changes. We welcome your feedback and contributions!

Features

  • Separate prompts from code for better modularity.
  • Supports multimodal input (text, images, audio, video).
  • Integration with large language models such as Gemini.
  • YAML-based prompt configuration with sample and default values.
  • Extensible to support other LLM APIs.

Installation

PromptWeaver can be easily installed using pip:

pip install promptweaver

Note: PromptWeaver requires Python 3.8 or higher.

Usage

First, you need to start by creating a .yml.j2 promptweaver template.

You will find template examples in our promptweaver gallery.

name: Hello World
description: A quickstart prompt showcasing how to answer a simple user message using gemini.
model:
  model_name: gemini-1.5-flash-001
  generation_config:
    temperature: 0.3
    max_output_tokens: 250
  system_instruction: You are an AI model trained to answer questions. Be kind and objective in your answers.
# ---
variables:
  user_message:
    sample: Hi!
# ---
user:
  - text: {{ user_message }}

Now you can call one of the supported LLM Clientes using the promptweaver template.

from promptweaver.core.prompt_template import PromptConfig
from promptweaver.clients.gemini.gemini_client import GeminiClient

# Initialize the Gemini client
gemini_client = GeminiClient(project="your_project", location="your_location")

# Load the prompt configuration
example_prompt = PromptConfig.from_file_with_sample_values("samples/example.yml.j2")

# Generate content
generate_content = gemini_client.generate_content(example_prompt)
print(generate_content.text)

Contributing

We welcome contributions! Please read our contributing guide for details on how to get started. The project can be found on GitHub.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

promptweaver-0.1.13.tar.gz (11.7 kB view details)

Uploaded Source

Built Distribution

promptweaver-0.1.13-py3-none-any.whl (18.6 kB view details)

Uploaded Python 3

File details

Details for the file promptweaver-0.1.13.tar.gz.

File metadata

  • Download URL: promptweaver-0.1.13.tar.gz
  • Upload date:
  • Size: 11.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: pdm/2.18.2 CPython/3.10.12 Linux/6.8.0-1014-azure

File hashes

Hashes for promptweaver-0.1.13.tar.gz
Algorithm Hash digest
SHA256 567a79437ddc24885b6bde68252d8115288521ac18c2de72ed84c2729804eedf
MD5 382db0a00cafc31de8490b9b903476f2
BLAKE2b-256 1dd9a9c54002a856a9ff91e8c4890f52d9f1d6b2b1c929aa06078e2e0d87225e

See more details on using hashes here.

File details

Details for the file promptweaver-0.1.13-py3-none-any.whl.

File metadata

  • Download URL: promptweaver-0.1.13-py3-none-any.whl
  • Upload date:
  • Size: 18.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: pdm/2.18.2 CPython/3.10.12 Linux/6.8.0-1014-azure

File hashes

Hashes for promptweaver-0.1.13-py3-none-any.whl
Algorithm Hash digest
SHA256 e04652d5d243d3d18f35947f1fe38ab5ec6da9aea74bf55566a7d4fc9e14c848
MD5 481ba881715c8f7be9c914ce40fb421d
BLAKE2b-256 6c98614939d97b6b2ab69c3502c508f48a01719bc91a40f9e0662213b21db49c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page