No project description provided
Project description
Prophet-NoGPL: Automatic Forecasting Procedure without GPL Dependency
This is a fork of the Prophet. Its aim is to completely remove PyStan2 dependency which is licensed under GPL.
How it works?
PyStan2 is completely removed from the dependency and CmdStanPy is used instead. The preuilt stan model binary and dependenty shared library files are downloaded to the local directory at the first run. The direcory is set to $HOME/.prophet/
by default and can be configured by the PROPHET_MODEL_DIR_PATH
env var. (see CmdStanPyBackend
class in the models.py
)
Currently, only linux x86_64 binary is prebuilt and downloaded. If you are using other platform, you need to compile the model file and dependent shared library (libtbb.so.2
) by comple_cmdstanpy_model.py
and move them to the PROPHET_MODEL_DIR_PATH
. To compile the model, you need to install CmdStan, CmdStanPy and C++ compiler. The prebuilt CmdStan can be downloaded from https://github.com/stan-dev/cmdstan/releases. After downloading one that is compatible to your system, untar and put it under $HOME/.cmdstan
. The directory structure should be like this.
$HOME/
.cmdstan/
cmdstan-<version>/
bin/
Then make sure there is a stanc
executable in the bin
directory. If there is only something like linux-stanc
, mac-stanc
etc, rename it to stanc
and append exec permission.
Below is the original Readme content. Some of them can be inconsistent to this package.
Prophet is a procedure for forecasting time series data based on an additive model where non-linear trends are fit with yearly, weekly, and daily seasonality, plus holiday effects. It works best with time series that have strong seasonal effects and several seasons of historical data. Prophet is robust to missing data and shifts in the trend, and typically handles outliers well.
Prophet is open source software released by Facebook's Core Data Science team. It is available for download on CRAN and PyPI.
Important links
- Homepage: https://facebook.github.io/prophet/
- HTML documentation: https://facebook.github.io/prophet/docs/quick_start.html
- Issue tracker: https://github.com/facebook/prophet/issues
- Source code repository: https://github.com/facebook/prophet
- Contributing: https://facebook.github.io/prophet/docs/contributing.html
- Prophet R package: https://cran.r-project.org/package=prophet
- Prophet Python package: https://pypi.python.org/pypi/prophet/
- Release blogpost: https://research.fb.com/prophet-forecasting-at-scale/
- Prophet paper: Sean J. Taylor, Benjamin Letham (2018) Forecasting at scale. The American Statistician 72(1):37-45 (https://peerj.com/preprints/3190.pdf).
Installation in R
Prophet is a CRAN package so you can use install.packages
.
install.packages('prophet')
After installation, you can get started!
Experimental backend - cmdstanr
You can also choose an experimental alternative stan backend called cmdstanr
. Once you've installed prophet
,
follow these instructions to use cmdstanr
instead of rstan
as the backend:
# R
# We recommend running this in a fresh R session or restarting your current session
install.packages(c("cmdstanr", "posterior"), repos = c("https://mc-stan.org/r-packages/", getOption("repos")))
# If you haven't installed cmdstan before, run:
cmdstanr::install_cmdstan()
# Otherwise, you can point cmdstanr to your cmdstan path:
cmdstanr::set_cmdstan_path(path = <your existing cmdstan>)
# Set the R_STAN_BACKEND environment variable
Sys.setenv(R_STAN_BACKEND = "CMDSTANR")
Windows
On Windows, R requires a compiler so you'll need to follow the instructions provided by rstan
. The key step is installing Rtools before attempting to install the package.
If you have custom Stan compiler settings, install from source rather than the CRAN binary.
Installation in Python
Prophet is on PyPI, so you can use pip
to install it. From v0.6 onwards, Python 2 is no longer supported. As of v1.0, the package name on PyPI is "prophet"; prior to v1.0 it was "fbprophet".
# Install pystan with pip before using pip to install prophet
# pystan>=3.0 is currently not supported
pip install pystan==2.19.1.1
pip install prophet
The default dependency that Prophet has is pystan
. PyStan has its own installation instructions. Install pystan with pip before using pip to install prophet.
Experimental backend - cmdstanpy
You can also choose a (more experimental) alternative stan backend called cmdstanpy
. It requires the CmdStan command line interface and you will have to specify the environment variable STAN_BACKEND
pointing to it, for example:
# bash
$ CMDSTAN=/tmp/cmdstan-2.22.1 STAN_BACKEND=CMDSTANPY pip install prophet
Note that the CMDSTAN
variable is directly related to cmdstanpy
module and can be omitted if your CmdStan binaries are in your $PATH
.
It is also possible to install Prophet with two backends:
# bash
$ CMDSTAN=/tmp/cmdstan-2.22.1 STAN_BACKEND=PYSTAN,CMDSTANPY pip install prophet
After installation, you can get started!
If you upgrade the version of PyStan installed on your system, you may need to reinstall prophet (see here).
Anaconda
Use conda install gcc
to set up gcc. The easiest way to install Prophet is through conda-forge: conda install -c conda-forge prophet
.
Windows
On Windows, PyStan requires a compiler so you'll need to follow the instructions. The easiest way to install Prophet in Windows is in Anaconda.
Linux
Make sure compilers (gcc, g++, build-essential) and Python development tools (python-dev, python3-dev) are installed. In Red Hat systems, install the packages gcc64 and gcc64-c++. If you are using a VM, be aware that you will need at least 4GB of memory to install prophet, and at least 2GB of memory to use prophet.
Changelog
Version 1.0 (2021.03.28)
- Python package name changed from fbprophet to prophet
- Fixed R Windows build issues to get latest version back on CRAN
- Improvements in serialization, holidays, and R timezone handling
- Plotting improvements
Version 0.7 (2020.09.05)
- Built-in json serialization
- Added "flat" growth option
- Bugfixes related to
holidays
andpandas
- Plotting improvements
- Improvements in cross validation, such as parallelization and directly specifying cutoffs
Version 0.6 (2020.03.03)
- Fix bugs related to upstream changes in
holidays
andpandas
packages. - Compile model during first use, not during install (to comply with CRAN policy)
cmdstanpy
backend now available in Python- Python 2 no longer supported
Version 0.5 (2019.05.14)
- Conditional seasonalities
- Improved cross validation estimates
- Plotly plot in Python
- Bugfixes
Version 0.4 (2018.12.18)
- Added holidays functionality
- Bugfixes
Version 0.3 (2018.06.01)
- Multiplicative seasonality
- Cross validation error metrics and visualizations
- Parameter to set range of potential changepoints
- Unified Stan model for both trend types
- Improved future trend uncertainty for sub-daily data
- Bugfixes
Version 0.2.1 (2017.11.08)
- Bugfixes
Version 0.2 (2017.09.02)
- Forecasting with sub-daily data
- Daily seasonality, and custom seasonalities
- Extra regressors
- Access to posterior predictive samples
- Cross-validation function
- Saturating minimums
- Bugfixes
Version 0.1.1 (2017.04.17)
- Bugfixes
- New options for detecting yearly and weekly seasonality (now the default)
Version 0.1 (2017.02.23)
- Initial release
License
Prophet is licensed under the MIT license.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file prophet-nogpl-1.0.2.tar.gz
.
File metadata
- Download URL: prophet-nogpl-1.0.2.tar.gz
- Upload date:
- Size: 67.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.1.13 CPython/3.9.2 Linux/5.10.102.1-microsoft-standard-WSL2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 152d63f0a229dd9b5cf6502705be32cb48a935fb2e09b74b9c506c5c47b2aca9 |
|
MD5 | 13d82c00dd99dfa363eb2df8a090c243 |
|
BLAKE2b-256 | 2f1661235368295cbab49014f5995a34ab729a467118945b7950a342326e9ac1 |
File details
Details for the file prophet_nogpl-1.0.2-py3-none-any.whl
.
File metadata
- Download URL: prophet_nogpl-1.0.2-py3-none-any.whl
- Upload date:
- Size: 48.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.1.13 CPython/3.9.2 Linux/5.10.102.1-microsoft-standard-WSL2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9fb0babe45efdd60594ac93fb13ac4c524905f9d3498a7db32d8cf19c2a52f56 |
|
MD5 | febc4ec362f8ac604980bed0ada2354a |
|
BLAKE2b-256 | 10955000b3297f02bbf259a30d6b0d23c42767c8e7c6a27c456b29f4670a317c |