Like Prophet but using Numba and LASSO.
Project description
ProphetLite
Like Prophet but in numba and all fit with LASSO
A basic comparison vs Prophet:
import pandas as pd
import matplotlib.pyplot as plt
from prophet import Prophet
df = pd.read_csv('https://raw.githubusercontent.com/facebook/prophet/main/examples/example_wp_log_peyton_manning.csv')
m = Prophet(weekly_seasonality=False)
m.fit(df, )
future = m.make_future_dataframe(periods=365)
forecast = m.predict(future)
m.plot(forecast)
m.plot_components(forecast)
plt.show()
Now for ProphetLite
You must pass your data as a numpy array
y = df['y'].values
Now to build the class and pass the seasonality
from ProphetLite.prophetlite import ProphetLite
pl = ProphetLite()
fitted = pl.fit(y, [365.25]) #To pass multiple seasonalities just add more nu
predicted = pl.predict(365)
Some Plotting helper methods
pl.plot()
pl.plot_components()
Comparison Plots
plt.plot(np.append(fitted['yhat'], predicted['yhat']), alpha=.3)
plt.plot(forecast['yhat'], alpha=.3)
plt.show()
The Trend Components:
plt.plot(np.append(fitted['trend'], predicted['trend']))
plt.plot(forecast['trend'])
plt.show()
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
No source distribution files available for this release.See tutorial on generating distribution archives.
Built Distribution
File details
Details for the file ProphetLite-0.0.2-py3-none-any.whl
.
File metadata
- Download URL: ProphetLite-0.0.2-py3-none-any.whl
- Upload date:
- Size: 6.5 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.7.15
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d6eb63536dd6efaf53be52ad23d4802a0c6c2b6d63a7e504422eb5437be4911d |
|
MD5 | 940e5815e45e022753c5c4891f3528a8 |
|
BLAKE2b-256 | c00731416c20b92a9524f1bf4d82397d0dd11ed2f528114ff0804cc6fbaf08ff |