Skip to main content

Propythia - A platform for classification of peptides/proteins using machine and deep learning

Project description

"# propythia3.0" |License| |PyPI version| |RTD version|

ProPythia

ProPythia is a platform for the classification of biological sequences (proteins and DNA) using machine and deep learning. It is a Python generic modular semi-automated platform containing functions for sequence representation and following ML/DL pipeline. The main strength and use of this package is the DESCRIPTION of BIOLOGICAL SEQUENCES. A crutial step in any ML pipeline. It includes: - calculus of Protein physicochemical descriptors (parallelization available) - calculus of different protein encodings - calculus of DNA physicochemical descriptors - calculus of different DNA encodings - Train and use of Word Embedding techniques ( integration of Bumblebee - see Credits)

Besides, it also has functions to facilitate the major tasks of ML including feature selection and dimensionality reduction, visualization of t-SNE and UMAP, perform clustering, train and optimize ML and DL models and make predictions with different algorithms, for both classification and regression.

Due to its modular architecture, users can use only the description and apply to their own pipelines.

One can also use this code to an educational purpose as it is an introduction on how to perform ML and DL to classify biological sequences.

The code was tested on several case studies ( antimicrobial peptides, enzymes, subcellular location, DNA primers sequences and others) described both in the examples section and in the published papers (see Credits section).

General view: plot

For Word embeddings module: plot

Documentation

Documentation available at

Instalation from PyPI (stable releases)

pip install propythia

Credits

 If you find this repository useful in your work or for educational purposes please refer to one of these:

- Sequeira, A. M., Gomes, I., & Rocha, M. (2023).Word embeddings for protein sequence analysis. In 20th IEEE Conference
  on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB2023) (pp. ). IEEE

- Sequeira, A. M., Lousa, D., & Rocha, M. (2022). ProPythia: a Python package for protein classification based on
  machine and deep learning. Neurocomputing, 484, 172-182.

- Sequeira A.M., Lousa D., Rocha M. (2021) ProPythia: A Python Automated Platform for the Classification of Proteins Using
  Machine Learning. Practical Applications of Computational Biology & Bioinformatics, 14th International Conference (PACBB 2020).
  PACBB 2020. Advances in Intelligent Systems and Computing, vol 1240. Springer, Cham. https://doi.org/10.1007/978-3-030-54568-0_4

License


Developed at the Centre of Biological Engineering, University of Minho

Released under the GNU Public License (version 3.0).


.. |License| image:: https://img.shields.io/badge/license-GPL%20v3.0-blue.svg
   :target: https://opensource.org/licenses/GPL-3.0
.. |PyPI version| image:: https://badge.fury.io/py/propythia.svg
   :target: https://badge.fury.io/py/propythia
.. |RTD version| image:: https://readthedocs.org/projects/propythia/badge/?version=latest&style=plastic
   :target: https://propythia.readthedocs.io/

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

propythia-3.0.2.tar.gz (4.5 MB view details)

Uploaded Source

Built Distribution

propythia-3.0.2-py3-none-any.whl (4.1 MB view details)

Uploaded Python 3

File details

Details for the file propythia-3.0.2.tar.gz.

File metadata

  • Download URL: propythia-3.0.2.tar.gz
  • Upload date:
  • Size: 4.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.16

File hashes

Hashes for propythia-3.0.2.tar.gz
Algorithm Hash digest
SHA256 9fbbdffe660ab86763a8c107e0c8608a5dcb10d7bbcbc61aefe2275ef2f6768e
MD5 65cc8b1706bb92c05d4f2ad7a2c16638
BLAKE2b-256 c39ebfbabcea1ee7f921f6bdb93f1a1c57fd173e98bab311929cd0524a8aa29b

See more details on using hashes here.

File details

Details for the file propythia-3.0.2-py3-none-any.whl.

File metadata

  • Download URL: propythia-3.0.2-py3-none-any.whl
  • Upload date:
  • Size: 4.1 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.16

File hashes

Hashes for propythia-3.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 2d871f9ab1c90a92f0f0e86e278fc3b5ef1b4720519b1148052ec5dd37a100ca
MD5 9afc18cb953450763ba62ad0c277e53b
BLAKE2b-256 b88fbc9c0a2ac6d439b779599e5857eda7b6adde2ab2cb7d6ad092f02ef7eb8e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page