Skip to main content

Marketing toolset using Pandas & Google Sheets API, with classes for a variety of other Google APIs

Project description

Google Sheets with Pandas dataframes, useful when ‘prospecting’ in analytics work and hacking.


Setup

  1. Create or select a project in Google’s developer console

    • Also, you will need to enable the APIs you plan to use

  2. Get a client_secrets.json credentials file from the credentials section

  3. Load the prospecting module in a Python session to initialize the ~/.prospecting/ folder in your home directory

  4. Place the client_secrets.json file in the ~/.prospecting/credentials/ directory

  5. Load an API class in a Python session, then run apiclass.authenticate() and follow steps

    • You only need to setup authentication once per API unless creds change

Examples:

import prospecting as p

Use stats sheet to store stats and misc statistics (scopelist defaults to read-only, so pass scopes for writing):

ss_stats = p.SheetsApi(spreadsheetid = 'PASTE_GOOGLE_SHEETID_HERE',
                       scopelist=['https://www.googleapis.com/auth/spreadsheets',
                                  'https://www.googleapis.com/auth/drive.metadata'])
ss_stats.authenticate()
ss_stats.update('Sheet1', somedataframe)

Use a reference sheet to provide a named entity list (or stopwords, vocabulary) for NLP preprocessing:

ss_reference = p.SheetsApi(spreadsheetid = 'PASTE_GOOGLE_SHEETID_HERE',
                           scopelist=['https://www.googleapis.com/auth/spreadsheets',
                                      'https://www.googleapis.com/auth/drive.metadata'])
ss_reference.authenticate()
named_entity_list = list(ss_reference.get('ne!A:B').iloc[:,0].values)

Get keywords sheet as dataframe, filter, take sampled subset, upload new df to other tab in spreadsheet:

ss_kw = p.SheetsApi(spreadsheetid = 'PASTE_GOOGLE_SHEETID_HERE',
                    scopelist=['https://www.googleapis.com/auth/spreadsheets',
                               'https://www.googleapis.com/auth/drive.metadata'])
ss_kw.authenticate()

#  Get data using spreadsheet syntax like ('sheetname') or ('sheetname!A:B25')
df_query = ss_kw.get('queries')
df_query_subset = df_query[(df_query['raw_len'] > 1) &
                           (df_query['reject'] != 1)]

#  Take a subsample of data
df_query_subset_sample = df_query_subset.sample(frac=0.5)
df_query_subset_sample.reset_index(drop=True, inplace=True)

#  Update 'sheetname' with dataframe object
ss_kw.update('queries_shuffled', df_query_subset_sample)

Key changes between 0.1.4 and 0.1.2:

  • Switched order of input arguments for ss.update() function:

    From
       ss.update(dataframe, 'sheetname')
    To
       ss.update('sheetname', dataframe)
  • Removed Docker files to simplify



hammer_and_pick hammer_and_pick hammer_and_pick

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

prospecting-0.1.5-py3-none-any.whl (19.9 kB view details)

Uploaded Python 3

File details

Details for the file prospecting-0.1.5-py3-none-any.whl.

File metadata

File hashes

Hashes for prospecting-0.1.5-py3-none-any.whl
Algorithm Hash digest
SHA256 f324edc2dc7fe27a268152d706f79ed3efd67cb6108879823f2b3adf85cb2daf
MD5 57a499cb87d24bf88bbeb8747f88f5f3
BLAKE2b-256 12172a27ee382519063728c3ef7ee014f14c62bc1ce59c08f1eb63df74a4d3e5

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page