Most sane way to store JSON data. Simple, light, strongly-typed and secure. (Probably, overall)
Project description
protonbites 🧪 EXPR1
Most sane way to store JSON data. Simple, light, strongly-typed and secure. (Probably, overall)
Step 1. Create a dataclass.
from dataclasses import dataclass
@dataclass
class Person:
name: str
age: int
For floats and ints, you can use
typing.Annotated[int, '<dtype>']
where<dtype>
is the desired datatype. Below are the avilable dtypes:ints
- int8 / uint8
- int16 / uint16
- int32 / uint32
- int64 / uint64
floats
- float32
- float64
Step 2. Create a schema from the dataclass.
from protonbites import get_schema
schema = get_schema(Person)
Step 3. Use the schema to encode/decode data.
# Init a new dataclass
person = Person(name="Jesse Pinkman", age=28)
encoded = schema.encode(person)
decoded = schema.decode(encoded)
assert isinstance(decoded, Person)
API Documentation incomplete
Oopsy daisy.
def encode
def encode(
obj: PythonBackendDataTypes,
/,
*,
force_keep_str: bool = False
) -> bytes
Encode data to a proton.
Args:
- obj (
PythonBackendDataTypes
): Object. - force_keep_str (
bool
): Force keep the string? Usually, when the expected text length is more than 102 characters, we usegzip
to compress the text data. If you wish to keep the string, set this toTrue
.
Simple Example:
encode({
"name": "Mr. Penguin",
"tags": ["depressed"],
"friends": [
{
"name": "Fernando Miguel",
"tags": ["dancing", "noot"]
}
]
})
# => b"\x01\x0f'Mr. Penguin'\x11\x03\x0f'depressed'\x11\x04\x11\x03\x01\x0f'Fernando Miguel'\x11\x03\x0f'dancing'\x11\x0f'noot'\x11\x04\x11\x02\x11\x04\x11\x02"
encode({ "text": "what the fish " * 9_999 })
# => b'\x01\x0f1f8b0800a6ed516602ffe…bf2c1f2a24c7aad4220200\x11\x02'
Example using custom ints and floats:
from protonbites import uint8, float32
encode({
"a": uint8(10),
"b": float32(10.98535)
})
def decode
def decode(__c: bytes, /) -> PythonBackendTypes
Decode the data.
Args:
- __c: The encoded data.
Example:
a = decode(b"\x01…\x02")
# => [ …, …, … ]
reveal_type(a) # PythonBackendDataTypes (type_checking)
# To ensure the decoded data is the entrypoint
b = decoded_safely(a)
reveal_type(b) # list (type_checking)
def get_schema
get_schema(__dc: type[T], /) -> Schema[T]
where T: DataclassProtocol
Args:
- __dc: The dataclass.
@dataclass
class Person:
name: str
age: int
schema = get_schema()
schema.encode(Person(name="Jesse Pinkman", age=28))
Were you looking for Mr. Penguin?
I'm standing in a void. No light. No sound. And as I stand there... In front of me, a penguin manifests. He merely stands. Observing. But I. I am filled with dread. I dare think it, but not say it. Are you the embodiment of my end? His gaze, so vacant, pierces my very soul. Then, from the all-encompassing abyss itself, the noots of a hundred penguins billow out. The noots coalesce, forming bodies. But from those bodies, arise not life, but... flames. Their joyful noots mutate into agonized screams. Suddenly, they're engulfed by the void. Yet, the most haunting realization? In their fleeting, fiery visages, I glimpse my own reflection.
(c) 2024 AWeirdDev
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file protonbites-0.2.tar.gz
.
File metadata
- Download URL: protonbites-0.2.tar.gz
- Upload date:
- Size: 6.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a2a66810c0e1c03fd2bc50f2fa05e1e48fe561a3da15ffb10cb0eb0cdd0c00e1 |
|
MD5 | 1f12f79788cf50a8123083479507c0d8 |
|
BLAKE2b-256 | 9a0888143ce85c6b51d2376acd8f7d90f14b0080e53879102b8e5f8cec0843e0 |