Python bindings for the protobuf zfits library
Project description
protozfits-python
Low-level reading and writing of zfits files using google protocol buffer objects.
To analyze data, you might be more interested in using a ctapipe
plugin to load your data into ctapipe. There are currently several plugins using this library as a dependency
for several CTA(O) prototypes:
ctapipe_io_lst
to read LST-1 commissioning raw data: https://github.com/cta-observatory/ctapipe_io_lstctapipe_io_nectarcam
to read NectarCam commissiong raw data: https://github.com/cta-observatory/ctapipe_io_nectarcam/ctapipe_io_zfits
for general reading of CTA zfits data, currently only supports DL0 as written during the ACADA-LST test campaign.
Note: before version 2.4, the protozfits python library was part of the adh-apis
Repository.
To improve maintenance, the two repositories were decoupled and this repository now only hosts the python bindings (protozfits
).
The needed C++ libZFitsIO
is build from a git submodule of the adh-apis
.
Table of Contents
Installation
Users
This package is published to PyPI and conda-forge.
PyPI packages include pre-compiled manylinux
wheels (no macOS wheels though) and conda packages are built for Linux and macOS.
When using conda, it's recommended to use the miniforge
conda distribution,
as it is fully open source and comes with the faster mamba package manager.
So install using:
pip install protozfits
or
mamba install protozfits
For development
This project is build using scikit-build-core
, which supports editable installs recompiling the project on import by setting a couple of config-options
for pip.
See https://scikit-build-core.readthedocs.io/en/latest/configuration.html#editable-installs.
To setup a development environment, create a venv, install the build requirements and then run the pip install command with the options given below:
$ python3 -m venv venv
$ source venv/bin/activate
$ pip install 'scikit-build-core[pyproject]' pybind11 'setuptools_scm[toml]'
$ pip install -e '.[all]' --no-build-isolation
You can now e.g. run the tests:
$ pytest src
scikit-build-core
will automatically recompile the project when importing the library.
Some caveats remain though, see the scikit-build-core documentation linked above.
Usage
If you are just starting with proto-z-fits files and would like to explore the file contents, try this:
Open a file
>>> from protozfits import File
>>> example_path = 'protozfits/tests/resources/example_9evts_NectarCAM.fits.fz'
>>> file = File(example_path)
>>> file
File({
'RunHeader': Table(1xDataModel.CameraRunHeader),
'Events': Table(9xDataModel.CameraEvent)
})
From this we learn, the file
contains two Table
named RunHeader
and Events
which
contains 9 rows of type CameraEvent
. There might be more tables with
other types of rows in other files. For instance LST has its RunHeader
called CameraConfig
.
Getting an event
Usually people just iterate over a whole Table
like this:
for event in file.Events:
# do something with the event
pass
But if you happen to know exactly which event you want, you can also directly get an event, like this:
event_17 = file.Events[17]
You can also get a range of events, like this:
for event in file.Events[100:200]:
# do something events 100 until 200
pass
It is not yet possible to specify negative indices, like file.Events[:-10]
does not work.
If you happen to have a list or any iterable or a generator with event ids you are interested in you can get the events in question like this:
interesting_event_ids = range(100, 200, 3)
for event in file.Events[interesting_event_ids]:
# do something with intesting events
pass
RunHeader
Even though there is usually only one run header per file, technically this single run header is stored in a Table. This table could contain multiple "rows" and to me it is not clear what this would mean... but technically it is possible.
At the moment I would recommend getting the run header out of the file we opened above like this (replace RunHeader with CameraConfig for LST data):
assert len(file.RunHeader) == 1
header = file.RunHeader[0]
For now, I will just get the next event
event = file.Events[0]
type(event)
<class 'protozfits.CameraEvent'>
event._fields
('telescopeID', 'dateMJD', 'eventType', 'eventNumber', 'arrayEvtNum', 'hiGain', 'loGain', 'trig', 'head', 'muon', 'geometry', 'hilo_offset', 'hilo_scale', 'cameraCounters', 'moduleStatus', 'pixelPresence', 'acquisitionMode', 'uctsDataPresence', 'uctsData', 'tibDataPresence', 'tibData', 'swatDataPresence', 'swatData', 'chipsFlags', 'firstCapacitorIds', 'drsTagsHiGain', 'drsTagsLoGain', 'local_time_nanosec', 'local_time_sec', 'pixels_flags', 'trigger_map', 'event_type', 'trigger_input_traces', 'trigger_output_patch7', 'trigger_output_patch19', 'trigger_output_muon', 'gps_status', 'time_utc', 'time_ns', 'time_s', 'flags', 'ssc', 'pkt_len', 'muon_tag', 'trpdm', 'pdmdt', 'pdmt', 'daqtime', 'ptm', 'trpxlid', 'pdmdac', 'pdmpc', 'pdmhi', 'pdmlo', 'daqmode', 'varsamp', 'pdmsum', 'pdmsumsq', 'pulser', 'ftimeoffset', 'ftimestamp', 'num_gains')
event.hiGain.waveforms.samples
array([241, 245, 248, ..., 218, 214, 215], dtype=int16)
An LST event will look something like so:
>>> event
CameraEvent(
configuration_id=1
event_id=1
tel_event_id=1
trigger_time_s=0
trigger_time_qns=0
trigger_type=0
waveform=array([ 0, 0, ..., 288, 263], dtype=uint16)
pixel_status=array([ 0, 0, 0, 0, 0, 0, 0, 12, 12, 12, 12, 12, 12, 12], dtype=uint8)
ped_id=0
nectarcam=NectarCamEvent(
module_status=array([], dtype=float64)
extdevices_presence=0
tib_data=array([], dtype=float64)
cdts_data=array([], dtype=float64)
swat_data=array([], dtype=float64)
counters=array([], dtype=float64))
lstcam=LstCamEvent(
module_status=array([0, 1], dtype=uint8)
extdevices_presence=0
tib_data=array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], dtype=uint8)
cdts_data=array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0], dtype=uint8)
swat_data=array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0], dtype=uint8)
counters=array([ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 1, 0, 0, 0, 31, 0, 0, 0, 243, 170, 204,
0, 0, 0, 0, 0], dtype=uint8)
chips_flags=array([ 0, 0, 0, 0, 0, 0, 0, 0, 61440,
245, 61440, 250, 61440, 253, 61440, 249], dtype=uint16)
first_capacitor_id=array([ 0, 0, 0, 0, 0, 0, 0, 0, 61440,
251, 61440, 251, 61440, 241, 61440, 245], dtype=uint16)
drs_tag_status=array([ 0, 12], dtype=uint8)
drs_tag=array([ 0, 0, ..., 2021, 2360], dtype=uint16))
digicam=DigiCamEvent(
))
>>> event.waveform
array([ 0, 0, 0, ..., 292, 288, 263], dtype=uint16)
event
supports tab-completion, which I regard as very important while exploring.
It is implemented using collections.namedtuple
.
I tried to create a useful string representation, it is very long, yes ... but I
hope you can still enjoy it:
>>> event
CameraEvent(
telescopeID=1
dateMJD=0.0
eventType=<eventType.NONE: 0>
eventNumber=97750287
arrayEvtNum=0
hiGain=PixelsChannel(
waveforms=WaveFormData(
samples=array([241, 245, ..., 214, 215], dtype=int16)
pixelsIndices=array([425, 461, ..., 727, 728], dtype=uint16)
firstSplIdx=array([], dtype=float64)
num_samples=0
baselines=array([232, 245, ..., 279, 220], dtype=int16)
peak_time_pos=array([], dtype=float64)
time_over_threshold=array([], dtype=float64))
integrals=IntegralData(
gains=array([], dtype=float64)
maximumTimes=array([], dtype=float64)
tailTimes=array([], dtype=float64)
raiseTimes=array([], dtype=float64)
pixelsIndices=array([], dtype=float64)
firstSplIdx=array([], dtype=float64)))
# [...]
Table header
fits.fz
files are still normal FITS files and
each Table in the file corresponds to a so called "BINTABLE" extension, which has a
header. You can access this header like this:
>>> file.Events
Table(100xDataModel.CameraEvent)
>>> file.Events.header
# this is just a sulection of all the contents of the header
XTENSION= 'BINTABLE' / binary table extension
BITPIX = 8 / 8-bit bytes
NAXIS = 2 / 2-dimensional binary table
NAXIS1 = 192 / width of table in bytes
NAXIS2 = 1 / number of rows in table
TFIELDS = 12 / number of fields in each row
EXTNAME = 'Events' / name of extension table
CHECKSUM= 'BnaGDmS9BmYGBmY9' / Checksum for the whole HDU
DATASUM = '1046602664' / Checksum for the data block
DATE = '2017-10-31T02:04:55' / File creation date
ORIGIN = 'CTA' / Institution that wrote the file
WORKPKG = 'ACTL' / Workpackage that wrote the file
DATEEND = '1970-01-01T00:00:00' / File closing date
PBFHEAD = 'DataModel.CameraEvent' / Written message name
CREATOR = 'N4ACTL2IO14ProtobufZOFitsE' / Class that wrote this file
COMPILED= 'Oct 26 2017 16:02:50' / Compile time
TIMESYS = 'UTC' / Time system
>>> file.Events.header['DATE']
'2017-10-31T02:04:55'
>>> type(file.Events.header)
<class 'astropy.io.fits.header.Header'>
The header is provided by astropy
.
pure protobuf mode
The library by default converts the protobuf objects into namedtuples and converts the AnyArray
data type
to numpy arrays. This has some runtime overhead.
In case you for example know exactly what you want
from the file, then you can get a speed-up by passing the pure_protob=True
option:
>>> from protozfits import File
>>> file = File(example_path, pure_protobuf=True)
>>> event = next(file.Events)
>>> type(event)
<class 'ProtoDataModel_pb2.CameraEvent'>
Now iterating over the file is faster than before. But you have no tab-completion and some contents are less useful for you:
>>> event.eventNumber
97750288 # <--- just fine
>>> event.hiGain.waveforms.samples
type: S16
data: "\362\000\355\000 ... " # <---- goes on "forever" .. raw bytes of the array data
>>> type(event.hiGain.waveforms.samples)
<class 'CoreMessages_pb2.AnyArray'>
You can convert these AnyArray
s into numpy arrays like this:
>>> from protozfits import any_array_to_numpy
>>> any_array_to_numpy(event.hiGain.waveforms.samples)
array([242, 237, 234, ..., 218, 225, 229], dtype=int16)
Command-Line Tools
This module comes with a command-line tool that can re-compress zfits files using different options for the default and specific column compressions. This can also be used to extract the first N events from a large file, e.g. to produce smaller files for unit tests.
Usage:
$ python -m protozfits.recompress_zfits --help
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distributions
File details
Details for the file protozfits-2.6.0.tar.gz
.
File metadata
- Download URL: protozfits-2.6.0.tar.gz
- Upload date:
- Size: 14.0 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1b83a62449781a83bf6d75c67add49ddc6078032f2b3782de6a2e294cf55db12 |
|
MD5 | 4c88d6f839a6f3b9e23bbdfb6ad07208 |
|
BLAKE2b-256 | 2a537340ed2699fb0d9ac71b3196b001aa7f5552790bdc00ee37dda74768de1c |
File details
Details for the file protozfits-2.6.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: protozfits-2.6.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 12.3 MB
- Tags: CPython 3.13, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0cb35e8e759fe209140563025074bb9055200aa6d539f0306f25495700384d67 |
|
MD5 | 3c399414b7c7f6097ffd57db0944fde4 |
|
BLAKE2b-256 | 4b155a62316401233e0debfa362da2805c0536ebeebf777f87fd8463a3c6a06c |
File details
Details for the file protozfits-2.6.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: protozfits-2.6.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 12.3 MB
- Tags: CPython 3.12, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b70ac7a04a7c4a3d5cd9d3b5eb230782ad61c01ea781156bafc30c9653dcc3b0 |
|
MD5 | 8a42c968b3122d2b1bebe80c3a19966b |
|
BLAKE2b-256 | fd5b73d7fafff748c5bfc58c48d3c56da2d5f0d9297631a274c4c1a36c32bb21 |
File details
Details for the file protozfits-2.6.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: protozfits-2.6.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 12.3 MB
- Tags: CPython 3.11, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 500a113b8fd19e834e469ea9716eb1f65d8c4f0980de74e9dfa4ed325e756e52 |
|
MD5 | b6d7fa8468152accb5bf25edc4209ac3 |
|
BLAKE2b-256 | 32cd4a5b4f60db76ec0a3bb4a3531876ba62fb7f4f8cfbc40dbc9234b52ad827 |
File details
Details for the file protozfits-2.6.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: protozfits-2.6.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 12.3 MB
- Tags: CPython 3.10, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d7fa1420f03c03d08aed358183da3a7e22fe253471f53c5613e4f1fc39f80ea3 |
|
MD5 | 8c0d2f69e4c59268e17840e7caaa9427 |
|
BLAKE2b-256 | d325c438e08d25cf3feebdf50733b2662ed72be316bcc6a4971f486cbbaeccdd |