Skip to main content

Quadratic Programming Solver for Robotics and beyond.

Project description

Proxsuite Logo

License Documentation CI - Linux/OSX/Windows - Conda PyPI version Conda version

ProxSuite is a collection of open-source, numerically robust, precise, and efficient numerical solvers (e.g., LPs, QPs, etc.) rooted in revisited primal-dual proximal algorithms. Through ProxSuite, we aim to offer the community scalable optimizers that deal with dense, sparse, or matrix-free problems. While the first targeted application is Robotics, ProxSuite can be used in other contexts without limits.

ProxSuite is actively developped and supported by the Willow and Sierra research groups, joint research teams between Inria, École Normale Supérieure de Paris and Centre National de la Recherche Scientifique localized in France.

ProxSuite is already integrated into:

  • CVXPY modeling language for convex optimization problems,
  • CasADi's symbolic framework for numerical optimization in general and optimal control. ProxQP is available in CasADi as a plugin to solve quadratic programs,
  • TSID: robotic software for efficient robot inverse dynamics with contacts and based on Pinocchio.

We are ready to integrate ProxSuite within other optimization ecosystems.

ProxSuite main features

Proxsuite is fast:

  • C++ template library,
  • cache-friendly.

Proxsuite is versatile, offering through a unified API advanced algorithms specialized for efficiently exploiting problem structures:

  • dense, sparse, and matrix-free matrix factorization backends,
  • advanced warm-starting options (e.g., equality-constrained initial guess, warm-start or cold-start options from previous results),

with dedicated features for

  • handling more efficiently box constraints, linear programs, QP with diagonal Hessian, or with far more constraints than primal variables,
  • solving nonconvex QPs,
  • solving batches of QPs in parallel,
  • solving the closest feasible QP if the QP appears to be primal infeasible,
  • differentiating feasible and infeasible QPs.

Proxsuite is flexible:

  • header only,
  • C++ 14/17/20 compliant,
  • Python and Julia bindings for easy code prototyping without sacrificing performance.

Proxsuite is extensible. Proxsuite is reliable and extensively tested, showing the best performances on the hardest problems of the literature. Proxsuite is supported and tested on Windows, Mac OS X, Unix, and Linux.

Documentation

The online ProxSuite documentation of the last release is available here.

Getting started

ProxSuite is distributed to many well-known package managers.

Quick install with :

   pip install proxsuite

This approach is available on Linux, Windows and Mac OS X.

Quick install with :

   conda install proxsuite -c conda-forge

This approach is available on Linux, Windows and Mac OS X.

Quick install with :

   brew install proxsuite

This approach is available on Linux and Mac OS X.

Alternative approaches

Installation from source is presented here.

Compiling a first example program

For the fastest performance, use the following command to enable vectorization when compiling the simple example.

g++ -O3 -march=native -DNDEBUG -std=gnu++17 -DPROXSUITE_VECTORIZE examples/first_example_dense.cpp -o first_example_dense $(pkg-config --cflags proxsuite)

Using ProxSuite with CMake

If you want to use ProxSuite with CMake, the following tiny example should help you:

cmake_minimum_required(VERSION 3.10)

project(Example CXX)
find_package(proxsuite REQUIRED)
set(CMAKE_CXX_STANDARD 17) # set(CMAKE_CXX_STANDARD 14) will work too

add_executable(example example.cpp)
target_link_libraries(example PUBLIC proxsuite::proxsuite)

# Vectorization support via SIMDE and activated by the compilation options '-march=native' or `-mavx2 -mavx512f`
add_executable(example_with_full_vectorization_support example.cpp)
target_link_libraries(example_with_full_vectorization_support PUBLIC proxsuite::proxsuite-vectorized)
target_compile_options(example_with_full_vectorization_support PUBLIC "-march=native")

If you have compiled ProxSuite with the vectorization support, you might also use the CMake target proxsuite::proxsuite-vectorized to also link against SIMDE. Don't forget to use -march=native to get the best performance.

ProxQP

The ProxQP algorithm is a numerical optimization approach for solving quadratic programming problems of the form:

$$ \begin{align} \min_{x} & ~\frac{1}{2}x^{T}Hx+g^{T}x \ \text{s.t.} & ~A x = b \ & ~l \leq C x \leq u \end{align} $$

where $x \in \mathbb{R}^n$ is the optimization variable. The objective function is defined by a positive semidefinite matrix $H \in \mathcal{S}^n_+$ and a vector $g \in \mathbb{R}^n$. The linear constraints are defined by the equality-contraint matrix $A \in \mathbb{R}^{n_\text{eq} \times n}$ and the inequality-constraint matrix $C \in \mathbb{R}^{n_\text{in} \times n}$ and the vectors $b \in \mathbb{R}^{n_\text{eq}}$, $l \in \mathbb{R}^{n_\text{in}}$ and $u \in \mathbb{R}^{n_\text{in}}$ so that $b_i \in \mathbb{R},~ \forall i = 1,...,n_\text{eq}$ and $l_i \in \mathbb{R} \cup { -\infty }$ and $u_i \in \mathbb{R} \cup { +\infty }, ~\forall i = 1,...,n_\text{in}$.

Citing ProxQP

If you are using ProxQP for your work, we encourage you to cite the related paper.

Numerical benchmarks

The numerical benchmarks of ProxQP against other commercial and open-source solvers are available here.

For dense Convex Quadratic Programs with inequality and equality constraints, when asking for relatively high accuracy (e.g., 1e-6), one obtains the following results.

Random Mixed QP_dense_eps_abs_1e-6

On the y-axis, you can see timings in seconds, and on the x-axis dimension wrt to the primal variable of the random Quadratic problems generated (the number of constraints of the generated problem is half the size of its primal dimension). For every dimension, the problem is generated over different seeds, and timings are obtained as averages over successive runs for the same problems. This chart shows for every benchmarked solver and random Quadratic program generated, barplot timings, including median (as a dot) and minimal and maximal values obtained (defining the amplitude of the bar). You can see that ProxQP is always below over solvers, which means it is the quickest for this test.

For hard problems from the Maros Meszaros testset, when asking for high accuracy (e.g., 1e-9), one obtains the results below.

maros_meszaros_problems_high_accuracy

The chart above reports the performance profiles of different solvers. It is classic for benchmarking solvers. Performance profiles correspond to the fraction of problems solved (on the y-axis) as a function of certain runtime (on the x-axis, measured in terms of a multiple of the runtime of the fastest solver for that problem). So the higher, the better. You can see that ProxQP solves the quickest over 60% of the problems (i.e., for $\tau=1$) and that for solving about 90% of the problems, it is at most 2 times slower than the fastest solvers solving these problems (i.e., for $\tau\approx2$).

Note: All these results have been obtained with a 11th Gen Intel(R) Core(TM) i7-11850H @ 2.50GHz CPU.

QPLayer

QPLayer enables to use a QP as a layer within standard learning architectures. More precisely, QPLayer differentiates over $\theta$ the primal and dual solutions of QP of the form

$$ \begin{align} \min_{x} & ~\frac{1}{2}x^{T}H(\theta)x+g(\theta)^{T}x \ \text{s.t.} & ~A(\theta) x = b(\theta) \ & ~l(\theta) \leq C(\theta) x \leq u(\theta) \end{align} $$

where $x \in \mathbb{R}^n$ is the optimization variable. The objective function is defined by a positive semidefinite matrix $H(\theta) \in \mathcal{S}^n_+$ and a vector $g(\theta) \in \mathbb{R}^n$. The linear constraints are defined by the equality-contraint matrix $A(\theta) \in \mathbb{R}^{n_\text{eq} \times n}$ and the inequality-constraint matrix $C(\theta) \in \mathbb{R}^{n_\text{in} \times n}$ and the vectors $b \in \mathbb{R}^{n_\text{eq}}$, $l(\theta) \in \mathbb{R}^{n_\text{in}}$ and $u(\theta) \in \mathbb{R}^{n_\text{in}}$ so that $b_i \in \mathbb{R},~ \forall i = 1,...,n_\text{eq}$ and $l_i \in \mathbb{R} \cup { -\infty }$ and $u_i \in \mathbb{R} \cup { +\infty }, ~\forall i = 1,...,n_\text{in}$.

QPLayer is able to learn more structured architectures. For example, $\theta$ can consists only in learning some elements of $A$ while letting $b$ fixed (see e.g., the example about how to include QPLayer into a learning pipeline). QPLayer can also differentiates over LPs. QPLayer allows for parallelized calculus over CPUs, and is interfaced with PyTorch.

Citing QPLayer

If you are using QPLayer for your work, we encourage you to cite the related paper.

Installation procedure

Please follow the installation procedure here.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

proxsuite-0.6.7-0-pp39-pypy39_pp73-manylinux_2_17_x86_64.whl (2.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

proxsuite-0.6.7-0-pp38-pypy38_pp73-manylinux_2_17_x86_64.whl (2.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

proxsuite-0.6.7-0-cp312-cp312-win_amd64.whl (4.6 MB view details)

Uploaded CPython 3.12 Windows x86-64

proxsuite-0.6.7-0-cp312-cp312-musllinux_1_2_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

proxsuite-0.6.7-0-cp312-cp312-manylinux_2_28_aarch64.whl (876.2 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ ARM64

proxsuite-0.6.7-0-cp312-cp312-manylinux_2_17_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

proxsuite-0.6.7-0-cp312-cp312-macosx_14_0_arm64.whl (892.2 kB view details)

Uploaded CPython 3.12 macOS 14.0+ ARM64

proxsuite-0.6.7-0-cp312-cp312-macosx_13_0_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.12 macOS 13.0+ x86-64

proxsuite-0.6.7-0-cp311-cp311-win_amd64.whl (4.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

proxsuite-0.6.7-0-cp311-cp311-musllinux_1_2_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

proxsuite-0.6.7-0-cp311-cp311-manylinux_2_28_aarch64.whl (877.8 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ ARM64

proxsuite-0.6.7-0-cp311-cp311-manylinux_2_17_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

proxsuite-0.6.7-0-cp311-cp311-macosx_14_0_arm64.whl (892.1 kB view details)

Uploaded CPython 3.11 macOS 14.0+ ARM64

proxsuite-0.6.7-0-cp311-cp311-macosx_13_0_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.11 macOS 13.0+ x86-64

proxsuite-0.6.7-0-cp310-cp310-win_amd64.whl (4.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

proxsuite-0.6.7-0-cp310-cp310-musllinux_1_2_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

proxsuite-0.6.7-0-cp310-cp310-manylinux_2_28_aarch64.whl (876.0 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ ARM64

proxsuite-0.6.7-0-cp310-cp310-manylinux_2_17_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

proxsuite-0.6.7-0-cp310-cp310-macosx_14_0_arm64.whl (890.6 kB view details)

Uploaded CPython 3.10 macOS 14.0+ ARM64

proxsuite-0.6.7-0-cp310-cp310-macosx_13_0_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.10 macOS 13.0+ x86-64

proxsuite-0.6.7-0-cp39-cp39-win_amd64.whl (4.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

proxsuite-0.6.7-0-cp39-cp39-musllinux_1_2_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

proxsuite-0.6.7-0-cp39-cp39-manylinux_2_28_aarch64.whl (876.2 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ ARM64

proxsuite-0.6.7-0-cp39-cp39-manylinux_2_17_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

proxsuite-0.6.7-0-cp39-cp39-macosx_14_0_arm64.whl (890.7 kB view details)

Uploaded CPython 3.9 macOS 14.0+ ARM64

proxsuite-0.6.7-0-cp39-cp39-macosx_13_0_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.9 macOS 13.0+ x86-64

proxsuite-0.6.7-0-cp38-cp38-win_amd64.whl (4.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

proxsuite-0.6.7-0-cp38-cp38-musllinux_1_2_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ x86-64

proxsuite-0.6.7-0-cp38-cp38-manylinux_2_28_aarch64.whl (875.8 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ ARM64

proxsuite-0.6.7-0-cp38-cp38-manylinux_2_17_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

proxsuite-0.6.7-0-cp38-cp38-macosx_14_0_arm64.whl (890.6 kB view details)

Uploaded CPython 3.8 macOS 14.0+ ARM64

proxsuite-0.6.7-0-cp38-cp38-macosx_13_0_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.8 macOS 13.0+ x86-64

File details

Details for the file proxsuite-0.6.7-0-pp39-pypy39_pp73-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for proxsuite-0.6.7-0-pp39-pypy39_pp73-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 4a7170b76686227c6bad979296a2d3e30594c8ac319a8092a0b36c8c4387a630
MD5 05fda6471efb3d703fa712ebf4fe0fd9
BLAKE2b-256 65c7e0f520a7845f6e41630611ed5f8fc6b5177410df4c2ea4997d4c5ffd06e2

See more details on using hashes here.

File details

Details for the file proxsuite-0.6.7-0-pp38-pypy38_pp73-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for proxsuite-0.6.7-0-pp38-pypy38_pp73-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 5c7effb6777c778b9c928512494912d27da1f3c9cd06a1892c2442527f20a188
MD5 fe31c75adda677ffd577bf6143c16def
BLAKE2b-256 aea847bd59b2eab309d5cf96decb94d53670959044e451da57d4eff28ec14fb6

See more details on using hashes here.

File details

Details for the file proxsuite-0.6.7-0-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for proxsuite-0.6.7-0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 6673e7776373317a093cb09694e8181986ee50afabade9ddc6baa20cfa60955e
MD5 d5e365a7a62f4b6fc4db55a356c2a319
BLAKE2b-256 84c798e416fd1bcf8080672a4de4261ca6814260ed312bbe64f82b81e03b29e2

See more details on using hashes here.

File details

Details for the file proxsuite-0.6.7-0-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for proxsuite-0.6.7-0-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 28ec305e079bbfdc8da241a744eeba175d79a09415d28f2a40248b638e1588d6
MD5 179a6eb01123a4b49cd7cd278da05c50
BLAKE2b-256 86c37d9af3368a767e98d0e63b316b0423276aabbaddb51052668ee050e92e19

See more details on using hashes here.

File details

Details for the file proxsuite-0.6.7-0-cp312-cp312-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for proxsuite-0.6.7-0-cp312-cp312-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 eca4ef58a7a989e0f91e89a6ef68f4ef90457fb4b17e39ee55ea5847d8d4409e
MD5 3624993f5ee2818b80d15d69cfa36938
BLAKE2b-256 566db7c9cfe9ac8851cb579a779c082656f97a9c51b27802248c81367de42381

See more details on using hashes here.

File details

Details for the file proxsuite-0.6.7-0-cp312-cp312-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for proxsuite-0.6.7-0-cp312-cp312-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 948441012f79634f5995771028e285677daa9c8c9024f83326dd5570e1967973
MD5 72a5724648eded1d2371e51d26cfed20
BLAKE2b-256 4283e5ce611af512ee9f95a908e744b3bfdeff35e15d900605f64e6b9d60f8be

See more details on using hashes here.

File details

Details for the file proxsuite-0.6.7-0-cp312-cp312-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for proxsuite-0.6.7-0-cp312-cp312-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 430288c9b39ef7485a44cbd2fa71287bff6d28165914b46938c578b7cb141212
MD5 8c04a58f9dd4cead90990f9c6079f079
BLAKE2b-256 52aa1f9a66256a40cb24f8f84eb50e051a055efcca3d4cb0cdae91da62e38c57

See more details on using hashes here.

File details

Details for the file proxsuite-0.6.7-0-cp312-cp312-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for proxsuite-0.6.7-0-cp312-cp312-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 950d1deb4b14f35060b50ce2cc7352eb02275555660d277b634228e4318b26dd
MD5 325d561688907610b13c5ae1382d11b5
BLAKE2b-256 90100837f24c28f1619180479e6a39799aa5a166f044e09b516ffcfb774c0b6d

See more details on using hashes here.

File details

Details for the file proxsuite-0.6.7-0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for proxsuite-0.6.7-0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 9c9802aa747b4102fab3596f4aa9ae632e9b9f3cd57cbcef1baec3e32e61dc54
MD5 f9c96a4897abdf2363a04f3315752537
BLAKE2b-256 852fd6abd266f271d23454f183d2301a12e0501e1d6334fa4a1fbcc09637af8e

See more details on using hashes here.

File details

Details for the file proxsuite-0.6.7-0-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for proxsuite-0.6.7-0-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 88b8455bd9e51bdd9f4d87f2077bde0e97d57a8dcb486a0e38b1bc6622c49ae2
MD5 ba66c5e4b758fba15c4d009c5c3bc0a4
BLAKE2b-256 a637a2d0f19723fd93a130369d0a2dcc6bac79136894d2b61d393956e8d35881

See more details on using hashes here.

File details

Details for the file proxsuite-0.6.7-0-cp311-cp311-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for proxsuite-0.6.7-0-cp311-cp311-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 e6e015b1aa0725aef4adc281b4c3f8d3bf1e9fb8ca862be0412e44d4e0727ee4
MD5 710797ed663c921d45109a31fe280c29
BLAKE2b-256 921e5275be4802ed7e434111463cacb23d3133da1229622c20ea6339d85cbcd9

See more details on using hashes here.

File details

Details for the file proxsuite-0.6.7-0-cp311-cp311-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for proxsuite-0.6.7-0-cp311-cp311-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 613de6c804729f796650aa9d3fef9854140f9d806ec27a3fd0eb9e4ab96d963e
MD5 45568a16e13607804c87ee12ee1017c6
BLAKE2b-256 5a802e4f71c50e4ed00b11cb9ae4a98d0c7e93c2d0c68434bd84c499af570344

See more details on using hashes here.

File details

Details for the file proxsuite-0.6.7-0-cp311-cp311-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for proxsuite-0.6.7-0-cp311-cp311-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 19e457b274de98778fca3e604dca4dce498b31cf387d879ffb67ba3caaf70091
MD5 57c7c1ad3224d019bc6d6b5715cd328c
BLAKE2b-256 3d94f2b549dc1e33556c0d399e256e4127a0b37681c3d8c954f09877d6d26270

See more details on using hashes here.

File details

Details for the file proxsuite-0.6.7-0-cp311-cp311-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for proxsuite-0.6.7-0-cp311-cp311-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 b796a12149843900a0f0179496b37210095a4bcf2ef74c38bb4dfd4530264c17
MD5 bd3ff04b5c0779236bb23f4f97d5530b
BLAKE2b-256 101f23d8b3246409ebc7b6b1621aa0375a019514bf52b08494284d67ee3f4032

See more details on using hashes here.

File details

Details for the file proxsuite-0.6.7-0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for proxsuite-0.6.7-0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 0a41d19b250427b268f6e86be55ad2ef256c68a4313b282cb9349f9cfd79ac86
MD5 307b9afa6c98f063197223dc4dccf6dd
BLAKE2b-256 a45f6278fd9de5716edd6eebda67058a53d63e2ae3a7adec6177a4732f36b075

See more details on using hashes here.

File details

Details for the file proxsuite-0.6.7-0-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for proxsuite-0.6.7-0-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 bb799edcc899022d9ba74c4c2f9bc476203b5bd5b5e064a6fc4436ed6efd2cec
MD5 26bb8799c92826956e8f6fd043041bed
BLAKE2b-256 bf9ced99adb29de45286eb8f07dd7569e408fb908fda69fd87eae6b0ec270289

See more details on using hashes here.

File details

Details for the file proxsuite-0.6.7-0-cp310-cp310-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for proxsuite-0.6.7-0-cp310-cp310-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 7fdf3624a3e5f0698b75d327049ece829e13cb59e85d12edb1ed00688ee6caa4
MD5 0241890645764dddcffd1e8164034019
BLAKE2b-256 2b51a619d191380ea66bdec692bdab8ae5669e50614955543459cdcc01914b06

See more details on using hashes here.

File details

Details for the file proxsuite-0.6.7-0-cp310-cp310-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for proxsuite-0.6.7-0-cp310-cp310-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 69c90111394e14274270634a056e7c1dff8c54f90566a593ac113967f9337f4d
MD5 df07a42f215305d4c52d3045f270aec7
BLAKE2b-256 624c0dee757dd73bbd2ddb6476a3c749ef82285e98581318992b7e180d4bdfce

See more details on using hashes here.

File details

Details for the file proxsuite-0.6.7-0-cp310-cp310-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for proxsuite-0.6.7-0-cp310-cp310-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 8be2f3813b267361445d9d8bd352d0e837033e67d1e22e4ec1503e77b71134de
MD5 183445c852ae6ad9b5ed45267b3f8fa5
BLAKE2b-256 0a97cb35b55f9102b2e23e04629bbc0717d0a943390c83c26020200f3e7fdc20

See more details on using hashes here.

File details

Details for the file proxsuite-0.6.7-0-cp310-cp310-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for proxsuite-0.6.7-0-cp310-cp310-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 de8ed5726b2f09a211d39efc6e595fc8e55b82c99697ad587ab9c23b6a13074a
MD5 c6270497559a80baf75e03c93f0105f9
BLAKE2b-256 9117c62c6a920de279f44c8218ef9973de738ffd3efb986bffe41b50f10b4cb8

See more details on using hashes here.

File details

Details for the file proxsuite-0.6.7-0-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for proxsuite-0.6.7-0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 c5e4ef61f376896745d5b9f2bc5bab5578f726f159f8610079d1f5ded47f0243
MD5 d78af14f4565de2078c7e7b39cbc78ca
BLAKE2b-256 c7135bcdd08a8025219d032fa743b90c08931de8c883349fee2e33078622565a

See more details on using hashes here.

File details

Details for the file proxsuite-0.6.7-0-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for proxsuite-0.6.7-0-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 e3497725ce99a6119cdcc0a6cf4c503788e654e0f59e566921a2b424717b037c
MD5 04e003433269fb7a512db3a4a2d4b1ce
BLAKE2b-256 c80c762a34932342cf1d5233ae67ac7e7607c506cc4b879929c507d55a3f730e

See more details on using hashes here.

File details

Details for the file proxsuite-0.6.7-0-cp39-cp39-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for proxsuite-0.6.7-0-cp39-cp39-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 9fe978839c929758f79aa8c72aaff6402df68112f07b713b53ed24f8ebe74581
MD5 213df9b813269fede703c02c811978bd
BLAKE2b-256 2cd4bcc3e304ea231c4b2c08af325ac8328e6f203ab59658bad75033c7c19dd6

See more details on using hashes here.

File details

Details for the file proxsuite-0.6.7-0-cp39-cp39-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for proxsuite-0.6.7-0-cp39-cp39-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 328f63e1472e38c78cd38870eafb5725fcdfe99553fed6481bd1a2de4fccc103
MD5 490c7cb34ff7e67e925f091b8107222d
BLAKE2b-256 df6fa55934664e0d8af2f92ed75354a68e4cbfd1e0747ac47f4feac1022df420

See more details on using hashes here.

File details

Details for the file proxsuite-0.6.7-0-cp39-cp39-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for proxsuite-0.6.7-0-cp39-cp39-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 a9f7031cfa2ddfefc883f83ef259b254822be2d44cef4e241db769c88d6d4ba4
MD5 7dd6c4a9c705b999e542f5ada385da73
BLAKE2b-256 0f2d2196ecee0e7c54766f089fcbe66e0b201950f5497f3f75837075b358dc2b

See more details on using hashes here.

File details

Details for the file proxsuite-0.6.7-0-cp39-cp39-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for proxsuite-0.6.7-0-cp39-cp39-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 2dcb04249b45862d1d7a5bb19d2ee4ffcbf729801d73640c82bbe1a5976e4ae5
MD5 a2ab40e93b84e0d6d31a2b5dcb8aa62d
BLAKE2b-256 4e29d6a3524742557571226fde615ea1f2ae8a85622fc75b3b01453e7434f025

See more details on using hashes here.

File details

Details for the file proxsuite-0.6.7-0-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for proxsuite-0.6.7-0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 f40cac09ce600e5addcac509b77f8aa52bdfb2392a271c06234f71330533f1c5
MD5 da491b8a5826b89c55a65f9b94768ac9
BLAKE2b-256 8866c6cce5041246cea73386d76ea283a3809d7930c58c6f61095fe478f51180

See more details on using hashes here.

File details

Details for the file proxsuite-0.6.7-0-cp38-cp38-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for proxsuite-0.6.7-0-cp38-cp38-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 8de60bbff079222bdf02e134386e70e64208b67303dea1a227683a7f4c72c48d
MD5 5a7546c3523ce37ffb9677fa2140e39d
BLAKE2b-256 fea2265b149641d9278adca8ec3a18e52ccaeb742ec413663a33d68f5d9565fd

See more details on using hashes here.

File details

Details for the file proxsuite-0.6.7-0-cp38-cp38-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for proxsuite-0.6.7-0-cp38-cp38-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 1d025e2ee2274f9a06ecf2c3ac11b365d3e9735fcb3057c049fd983a0960f249
MD5 f5aa113a32ad0e60eddf35f5b8ed96d3
BLAKE2b-256 2e4fa6b9c3760c21c88c3f646d85604df70c0c013dc2a337ecc94c51e8e86b7b

See more details on using hashes here.

File details

Details for the file proxsuite-0.6.7-0-cp38-cp38-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for proxsuite-0.6.7-0-cp38-cp38-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 e516b701bfffdcc916e8482e54fc6c2f62171942fc9b642c436da38fcefc895f
MD5 72885027511da4bb637dabd555c0b305
BLAKE2b-256 a0fbf284506775cb904d91b786822f1214325274039b36abde447859f46de3d9

See more details on using hashes here.

File details

Details for the file proxsuite-0.6.7-0-cp38-cp38-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for proxsuite-0.6.7-0-cp38-cp38-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 6bf6df84cb40c01078d39d6a50d85304c8bdd2414c30a75f1ee22083fd8ff9ec
MD5 4cdeaafc432fc2b0935ad6a46b5cbf8c
BLAKE2b-256 c5d2fe378c33395b5f94a5dfe2ca80297596844e562c9db153bba8595948cf7e

See more details on using hashes here.

File details

Details for the file proxsuite-0.6.7-0-cp38-cp38-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for proxsuite-0.6.7-0-cp38-cp38-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 25cb4cc0c0f0c9812a54c184219ba98a8bf2f1b4acc9abdee8fce170f902e962
MD5 5fb0fa7f8c24a848290834c954c73bde
BLAKE2b-256 1fafaa3761e58ac704e37d637796c7baee46f3e25f1af9dd5060ff0568f29566

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page