Skip to main content

Number partitioning in Python

Project description

prtpy

Pytest result PyPI version

Python code for multiway number partitioning and bin packing algorithms.

Supports several exact and approximate algorithms, with several input formats, optimization objectives and output formats.

Installation

Basic installation:

pip install prtpy

To run simulation experiments:

pip install prtpy[simulations]

To speed up the ILP code, you can install the GUROBI solver. See the documentation of Python-MIP for more information.

Usage

The function prtpy.partition can be used to activate all number-partitioning algorithms. For example, to partition the values [1,2,3,4,5] into two bins using the greedy approximation algorithm, do:

import prtpy
prtpy.partition(algorithm=prtpy.partitioning.greedy, numbins=2, items=[1,2,3,4,5])

To use the exact algorithm based on ILP, and maximize the smallest sum:

prtpy.partition(algorithm=prtpy.partitioning.ilp, numbins=2, items=[1,2,3,4,5], objective=prtpy.obj.MaximizeSmallestSum)

Similarly, the function prtpy.packing can be used to activate all bin-packing algorithms.

For more features and examples, see:

  1. Number-partitioning algorithms;
  2. Bin-packing algorithms;
  3. Bin-covering algorithms;
  4. Input formats;
  5. Optimization objectives;
  6. Output formats.

Adding new algorithms

To add a new algorithm for number partitioning, write a function that accepts the following parameters:

  • binner - an item of class Binner structure (see below).
  • numbins - an integer - how many bins to put the items into.
  • items - a list of item-names (the item values are given by the function binner.valueof).
  • Any other parameters that are required by your algorithm.

For an example, see the implementation of existing algorithms, e.g. greedy.

To add a new algorithm for bin packing or bin covering, write a function that accepts the following parameters:

  • binner - an item of class Binner structure (see below).
  • binsize - the capacity of a bin (maximum sum in bin-packing; minimum sum in bin-covering).
  • items - a list of item-names (the item values are given by the function binner.valueof).
  • Any other parameters that are required by your algorithm.

For an example, see the implementation of existing algorithms, e.g. first_fit.

The Binner class contains methods for handling bins in a generic way --- handling both item-names and item-values with a single interface. The main supported methods are:

  • bins = binner.new_bins(numbins) --- constructs a new array of empty bins.
  • binner.add_item_to_bin(bins, item, index) --- updates the given bins array by adding the given item to the bin with the given index.
  • binner.sums(bins) --- extracts, from the bins array, only the array of sums.
  • bins = binner.add_empty_bins(bins, numbins) --- creates a new bins array with some additional empty bins at the end.
  • bins = binner.remove_bins(bins, numbins) --- creates a new bins array with some bins removed at the end.
  • binner.valueof(item) --- returns the value (size) of the given item.

Related libraries

Limitations

The package is tested on Python versions 3.8, 3.9 and 3.10. Other versions are not supported.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

prtpy-0.8.3.tar.gz (61.3 kB view details)

Uploaded Source

Built Distribution

prtpy-0.8.3-py3-none-any.whl (64.1 kB view details)

Uploaded Python 3

File details

Details for the file prtpy-0.8.3.tar.gz.

File metadata

  • Download URL: prtpy-0.8.3.tar.gz
  • Upload date:
  • Size: 61.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for prtpy-0.8.3.tar.gz
Algorithm Hash digest
SHA256 a6cec04a8fd7c1add066aef6292a992048527ec8c0e6e0780e46acd5d02ee36a
MD5 d09a9e9bee8f79a3cf62b463cab53277
BLAKE2b-256 3d23907d3b406c8a9b506d11008163c0de10d7c643f91311fc3cd8d71228ab2a

See more details on using hashes here.

File details

Details for the file prtpy-0.8.3-py3-none-any.whl.

File metadata

  • Download URL: prtpy-0.8.3-py3-none-any.whl
  • Upload date:
  • Size: 64.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for prtpy-0.8.3-py3-none-any.whl
Algorithm Hash digest
SHA256 cb3159172589104a513bac64218ddfe773ecd58f4a25dedcc1f099cf8096700f
MD5 c45917ab1bf82ae522a890d62d90ef54
BLAKE2b-256 c38961611b2146446a83cfe9103f91c4b6e30026ab7070dd6807dba5b65cce18

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page