Skip to main content

A fast algorithm to optimally compose privacy guarantees of differentially private (DP) mechanisms to arbitrary accuracy.

Project description

Privacy Random Variable (PRV) Accountant

A fast algorithm to optimally compose privacy guarantees of differentially private (DP) algorithms to arbitrary accuracy. Our method is based on the notion of privacy loss random variables to quantify the privacy loss of DP algorithms. For more details see [1].

Installation

pip install prv-accountant

Mechanisms

Currently the following mechanisms are supported:

Subsampled Gaussian Mechanism

from prv_accountant import PoissonSubsampledGaussianMechanism
prv = PoissonSubsampledGaussianMechanism(noise_multiplier, sampling_probability)

which computes the privacy curve

$$ \delta \left ( \mathcal{N}(0, \sigma^2) | (1-p) \mathcal{N}(0, \sigma^2) + p \mathcal{N}(1, \sigma^2) \right ), $$

where $p$ is the sampling probability and $\sigma$ is the noise multiplier. The second argument represents a mixture distribution.

Gaussian Mechanism

from prv_accountant import GaussianMechanism
prv = GaussianMechanism(noise_multiplier)

which computes the privacy curve

$$ \delta \left ( \mathcal{N}(0, \sigma^2) | \mathcal{N}(1, \sigma^2) \right ), $$

where $\sigma$ is the noise multiplier.

Laplace Mechanism

from prv_accountant import LaplaceMechanism
prv = LaplaceMechanism(mu)

which computes the privacy curve

$$ \delta \left ( \textsf{Lap}(0, 1) | \textsf{Lap}(\mu, 1) \right ). $$

Pure-DP and Approximate-DP

It is also possible to compose DP guarantees directly

  • pure $\varepsilon$-DP guarantees using prv_accountant.PureDPMechanism(epsilon)
  • approximate $(\varepsilon, \delta)$-DP guarantees using prv_accountant.ApproximateDPMechanism(epsilon, delta)

Custom Mechanisms

It is also possible to add custom mechanisms for the composition computation. An example can be found in this notebook. All we need is to implement the CDF of the privacy loss distribution.

Example

Heterogeneous Composition

It is possible to compose different mechanisms. The following example will compute the composition of three different mechanism $M^{(a)}, M^{(b)}$ and $M^{(c)}$ composed with themselves $m, n$ and $o$ times, respectively.

An application for such a composition is DP-SGD training with increasing batch size and therefore increasing sampling probability. After $m+n+o$ training steps, the resulting privacy mechanism $M$ for the whole training process is given by $M = M_1^{(a)} \circ \dots \circ M_m^{(a)} \circ M_1^{(b)} \circ \dots \circ M_n^{(b)} \circ M_1^{(c)} \circ \dots \circ M_o^{(c)}$.

Using the prv_accountant we need to create a privacy random variable for each mechanism

from prv_accountant.privacy_random_variables import PoissonSubsampledGaussianMechanism, GaussianMechanism, LaplaceMechanism

prv_a = PoissonSubsampledGaussianMechanism(noise_multiplier=0.8, sampling_probability=5e-3)
prv_b = GaussianMechanism(noise_multiplier=8.0)
prv_c = LaplaceMechanism(mu=0.1)

m = 100
n = 200
o = 100

Next, we need to create an accountant instance. The accountant will take care of most of the numerical intricacies such as finding the support of the PRV and discretisation. In order to find a suitable domain, the accountant needs to know about the largest number of compositions of each PRV with itself that will be computed. Larger values of max_self_compositions lead to larger domains which can cause slower performance. In the case of DP-SGD, a reasonable choice of max_self_compositions would be the total number of training steps. Additionally, the desired error bounds for $\varepsilon$ and $\delta$ are required.

from prv_accountant import PRVAccountant

accountant = PRVAccountant(
    prvs=[prv_a, prv_b, prv_c],
    max_self_compositions=[1_000, 1_000, 1_000],
    eps_error=0.1,
    delta_error=1e-10
)

Finally, we're ready to compute the composition. The final bounds and estimates for $\varepsilon$ for the mechanism $M$ are

eps_low, eps_est, eps_up = accountant.compute_epsilon(delta=1e-6, num_self_compositions=[m, n, o])

DP-SGD

For homogeneous DP-SGD (i.e. constant noise multiplier and constant sampling probability) things are even simpler. We provide a simple command line utility for getting epsilon estimates.

compute-dp-epsilon --sampling-probability 5e-3 --noise-multiplier 0.8 --delta 1e-6 --num-compositions 1000

Or, use it in python code

from prv_accountant.dpsgd import DPSGDAccountant

accountant = DPSGDAccountant(
    noise_multiplier=0.8,
    sampling_probability=5e-3,
    delta=1e-6,
    eps_error=0.1,
    delta_error=1e-10,
    max_compositions=1000
)

eps_low, eps_estimate, eps_upper = accountant.compute_epsilon(num_compositions=1000)

For more examples, have a look in the notebooks directory.

References

[1] Sivakanth Gopi, Yin Tat Lee, Lukas Wutschitz. (2021). Numerical composition of differential privacy. Advances in Neural Information Processing Systems

Contributing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com.

When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact opencode@microsoft.com with any additional questions or comments.

Trademarks

This project may contain trademarks or logos for projects, products, or services. Authorized use of Microsoft trademarks or logos is subject to and must follow Microsoft's Trademark & Brand Guidelines. Use of Microsoft trademarks or logos in modified versions of this project must not cause confusion or imply Microsoft sponsorship. Any use of third-party trademarks or logos are subject to those third-party's policies.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

prv_accountant-0.2.0.tar.gz (17.7 kB view details)

Uploaded Source

Built Distribution

prv_accountant-0.2.0-py3-none-any.whl (21.8 kB view details)

Uploaded Python 3

File details

Details for the file prv_accountant-0.2.0.tar.gz.

File metadata

  • Download URL: prv_accountant-0.2.0.tar.gz
  • Upload date:
  • Size: 17.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for prv_accountant-0.2.0.tar.gz
Algorithm Hash digest
SHA256 548400c975242ef63e4a2c0a2e58070b15ad0ddc35056b25e9e5692b4e337f68
MD5 7510d1a95a5fa7a175d89a026f2cebf5
BLAKE2b-256 96296cfad0b20a351c87c1076919f588ce4e66ec10064679c9ddb81b43bcfb2c

See more details on using hashes here.

File details

Details for the file prv_accountant-0.2.0-py3-none-any.whl.

File metadata

File hashes

Hashes for prv_accountant-0.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 53564736db91327ac4cc6953c725a8510cfde397e01d99a6092d61f8f1e3c74d
MD5 bbee11dcfae5e723c38fac6f084aff5a
BLAKE2b-256 8544afd667e55774f93117872f533efa82644de45ec4cd4a51f3343f811e5bb6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page