Skip to main content

a python optics module

Project description

# Prysm

[![CircleCI](https://circleci.com/gh/brandondube/prysm.svg?style=svg)](https://circleci.com/gh/brandondube/prysm?branch=master) [![Documentation Status](https://readthedocs.org/projects/prysm/badge/?version=stable)](http://prysm.readthedocs.io/en/stable/?badge=stable) [![Coverage Status](https://coveralls.io/repos/github/brandondube/prysm/badge.svg?branch=master)](https://coveralls.io/github/brandondube/prysm?branch=master) [![DOI](http://joss.theoj.org/papers/10.21105/joss.01352/status.svg)](https://doi.org/10.21105/joss.01352)

Prysm is a python 3.6+ library for numerical optics. Its features are a superset of those in both POPPY and PROPER, not limited to physical optics, thin lens, thin film, and detector modeling. There is also a submodule that can replace the software that comes with an interferometer for data analysis.

Prysm is believed to be by significant margin the fastest package in the world at what it does. On CPU, end-to-end calculation is more than 100x as fast as the above for like-for-like calculations. On GPU, prysm is more than 1,000x faster than its competition. The [lowfssim](https://github.com/nasa-jpl/lowfssim) model can run at over 2kHz in real-time and is all prysm under the hood.

Prysm can be used for everything from forward modeling of optical systems from camera lenses to coronographs to reverse modeling and phase retrieval. Due to its composable structure, it plays well with others and can be substituted in or out of other code easily. Of special note is prysm’s interchangeable backend system, which allows the user to freely exchange numpy for cupy, enabling use of a GPU for _all_ computations, or other similar exchanges, such as pytorch for algorithmic differentiation.

## Installation

prysm is on pypi: ` pip install prysm `

prysm requires only [numpy](http://www.numpy.org/), and [scipy](https://www.scipy.org/).

### Optional Dependencies

Prysm uses numpy for array operations or any compatible library. To use GPUs, you may install [cupy](https://cupy.chainer.org/) and use it as the backend at runtime. Plotting uses [matplotlib](https://matplotlib.org/). Images are read and written with [imageio](https://imageio.github.io/). Some MTF utilities utilize [pandas](https://pandas.pydata.org/) and [seaborn](https://seaborn.pydata.org/). Reading of Zygo datx files requires [h5py](https://www.h5py.org/).

## Features

### Propagation - Pupil-to-Focus - Focus-to-Pupil - Free space (“plane to plane” or “angular spectrum”)

### Polynomials - Zernike - Legendre - Chebyshev (1st, 2nd, 3rd, 4th kind) - Jacobi - 2D-Q, Qbfs, Qcon - Hopkins - Hermite (Probablist’s and Physicist’s) - Dickson - fitting - projection

All of these polynomials provide highly optimized GPU-compatible implementations, as well as derivatives.

### Pupil Masks - circles, binary and anti-aliased - ellipses - rectangles - N-sided regular convex polygons - N-vaned spiders

### Segmented systems - parametrized pupil mask generation - per-segment errors based on any polynomial basis expansion

### Image Simulation - Convolution - Smear - Jitter - in-the-box targets - - Siemens’ Star - - Slanted Edge - - BMW Target (crossed edges) - - Pinhole - - Slit - - Tilted Square

### Metrics - Strehl - Encircled Energy - RMS, PV, Sa, Std, Var - Centroid - FWHM, 1/e, 1/e^2 - PSD - MTF / PTF / OTF - PSD (and parametric fit, synthesis from parameters) - slope / gradient - Total integrated scatter - Bandlimited RMS

### Detectors - fully integrated noise model (shot, read, prnu, etc) - arbitrary pixel apertures (square, oblong, purely numerical) - optical low pass filters - Bayer compositing, demosaicing

### Thin Films - r, t parameters, even over spatially varying extent with high performance - Brewster’s angle - Critical Angle - Snell’s law

### Refractive Index - Cauchy’s equation - Sellmeier’s equation

### Thin Lenses - Defocus to delta z at the image and reverse - object/image distance relation - image/object distances and magnification - image/object distances and NA/F# - magnification and working F/# - two lens BFL, EFL (thick lenses)

### Tilted Planes and other surfaces

  • forward or reverse projection of surfaces

### Deformable Mirrors

  • surface synthesis in or out of beam normal based on arbitrary influence function with arbitrary sampling

  • crosstalk

  • stuck, dead, and tied actuators

  • DM surface misalignment / registration errors

### Interferometry

  • PSD

  • Low/High/Bandpass/Bandreject filtering

  • spike clipping

  • polynomial fitting and projection

  • statistical evaluation (PV, RMS, PVr, Sa, bandlimited RMS…)

  • total integrated scatter

  • synthetic fringe maps with extra tilt fringes

  • synthesize map from PSD spec

## Tutorials, How-Tos

See the [documentation](https://prysm.readthedocs.io/en/stable/tutorials/index.html) on [each](https://prysm.readthedocs.io/en/stable/how-tos/index.html)

## Contributing

If you find an issue with prysm, please open an [issue](https://github.com/brandondube/prysm/issues) or [pull request](https://github.com/brandondube/prysm/pulls). Prysm has some usage of f-strings, so any code contributed is only expected to work on python 3.6+, and is licensed under the [MIT license](https://github.com/brandondube/prysm/blob/master/LICENSE.md).

Issue tracking, roadmaps, and project planning are done on Zenhub. Contact Brandon for an invite if you would like to participate; all are welcome.

## Heritage

  • prysm was used to perform phase retrieval used to focus Nav and Hazcam, enhanced engineering cameras used to operate the Mars2020 Perserverence rover.

  • prysm is used to build the [official model of LOWFS](https://github.com/nasa-jpl/lowfssim), the Low Order Wavefront Sensing and Control system for the Roman coronoagraph instrument. In this application, it has been used to validate dynamics of a hardware testbed to 35 picometers, or 0.08% of the injected dynamics. The model runs at over 2kHz, faster than the real-time control system, at the same fidelity used to achieve 35 pm model agreement in hardware experiments.

  • prysm is used by several FFRDCs in the US, as well as their equivalent organizations abroad

  • prysm is used by multiple ultra precision optics manufactures as part of their metrology data processing workflow

  • prysm is used by multiple interferometer vendors to cross validate their own software offerings

  • prysm is used at multiple universities to model optics both in a generic capacity and laboratory systems

  • your name here(?)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

prysm-0.21.1.tar.gz (121.3 kB view details)

Uploaded Source

File details

Details for the file prysm-0.21.1.tar.gz.

File metadata

  • Download URL: prysm-0.21.1.tar.gz
  • Upload date:
  • Size: 121.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.64.0 CPython/3.8.12

File hashes

Hashes for prysm-0.21.1.tar.gz
Algorithm Hash digest
SHA256 461e55bb032d3db2891c895903912c4bcc6c9930d7a5e8c040351791ac97f1fd
MD5 a377030e11a77dc9084bbc7b3cfcaad0
BLAKE2b-256 34c6d96f8c29d2c0a1fe0e23e438324521f7b8cc2fb17c2ba38c3d73b0d2a6f8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page