Skip to main content

Writers and controlled vocabulary manager for PSI-MS's mzML and mzIdentML standards

Project description

psims

Prototype work for a unified API for writing Proteomics Standards Initiative standardized formats for mass spectrometry:

  1. mzML
  2. mzIdentML
  3. mzMLb

See the Documenation for more information

Installation

With pip:

pip install psims

With conda:

conda install -c bioconda -c conda-forge -c defaults psims

mzML Minimal Example

from psims.mzml.writer import MzMLWriter

# Load the data to write
scans = get_scan_data()

with MzMLWriter(open("out.mzML", 'wb'), close=True) as out:
    # Add default controlled vocabularies
    out.controlled_vocabularies()
    # Open the run and spectrum list sections
    with out.run(id="my_analysis"):
        spectrum_count = len(scans) + sum([len(products) for _, products in scans])
        with out.spectrum_list(count=spectrum_count):
            for scan, products in scans:
                # Write Precursor scan
                out.write_spectrum(
                    scan.mz_array, scan.intensity_array,
                    id=scan.id, params=[
                        "MS1 Spectrum",
                        {"ms level": 1},
                        {"total ion current": sum(scan.intensity_array)}
                     ])
                # Write MSn scans
                for prod in products:
                    out.write_spectrum(
                        prod.mz_array, prod.intensity_array,
                        id=prod.id, params=[
                            "MSn Spectrum",
                            {"ms level": 2},
                            {"total ion current": sum(prod.intensity_array)}
                         ],
                         # Include precursor information
                         precursor_information={
                            "mz": prod.precursor_mz,
                            "intensity": prod.precursor_intensity,
                            "charge": prod.precursor_charge,
                            "scan_id": prod.precursor_scan_id,
                            "activation": ["beam-type collisional dissociation", {"collision energy": 25}],
                            "isolation_window": [prod.precursor_mz - 1, prod.precursor_mz, prod.precursor_mz + 1]
                         })

Citing

If you use psims in an academic project, please cite:

Klein, J. A., & Zaia, J. (2018). psims - A declarative writer for mzML and mzIdentML for Python. Molecular & Cellular Proteomics, mcp.RP118.001070. https://doi.org/10.1074/mcp.RP118.001070

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

psims-1.2.2.tar.gz (11.7 MB view details)

Uploaded Source

Built Distribution

psims-1.2.2-py3-none-any.whl (11.8 MB view details)

Uploaded Python 3

File details

Details for the file psims-1.2.2.tar.gz.

File metadata

  • Download URL: psims-1.2.2.tar.gz
  • Upload date:
  • Size: 11.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.0

File hashes

Hashes for psims-1.2.2.tar.gz
Algorithm Hash digest
SHA256 06b74772fc737261681a1a8977d9077716eaf029442c48ebafefe1451c8e680f
MD5 2625fb1ccbd9e3f6dbcaca4afaf8f477
BLAKE2b-256 5acdb041d09c0c34ec701899f7a205fd4184b6bb6775316fb25287cffb03eaa9

See more details on using hashes here.

File details

Details for the file psims-1.2.2-py3-none-any.whl.

File metadata

  • Download URL: psims-1.2.2-py3-none-any.whl
  • Upload date:
  • Size: 11.8 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.0

File hashes

Hashes for psims-1.2.2-py3-none-any.whl
Algorithm Hash digest
SHA256 c0ba234c7d047c0256b7194fb0f7b8dcf0b9aad808c5070f2038c65e382d5b1c
MD5 9504c4fdce930fdf4ce2f5b7446cb19a
BLAKE2b-256 622f901c37f61ce71d7459f07b95edfb7f03768785f066ec6e4f4eaeadc34cb5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page