Skip to main content

Writers and controlled vocabulary manager for PSI-MS's mzML and mzIdentML standards

Project description

psims

Prototype work for a unified API for writing Proteomics Standards Initiative standardized formats for mass spectrometry:

  1. mzML
  2. mzIdentML
  3. mzMLb

See the Documenation for more information

Installation

With pip:

pip install psims

With conda:

conda install -c bioconda -c conda-forge -c defaults psims

mzML Minimal Example

from psims.mzml.writer import MzMLWriter

# Load the data to write
scans = get_scan_data()

with MzMLWriter(open("out.mzML", 'wb'), close=True) as out:
    # Add default controlled vocabularies
    out.controlled_vocabularies()
    # Open the run and spectrum list sections
    with out.run(id="my_analysis"):
        spectrum_count = len(scans) + sum([len(products) for _, products in scans])
        with out.spectrum_list(count=spectrum_count):
            for scan, products in scans:
                # Write Precursor scan
                out.write_spectrum(
                    scan.mz_array, scan.intensity_array,
                    id=scan.id, params=[
                        "MS1 Spectrum",
                        {"ms level": 1},
                        {"total ion current": sum(scan.intensity_array)}
                     ])
                # Write MSn scans
                for prod in products:
                    out.write_spectrum(
                        prod.mz_array, prod.intensity_array,
                        id=prod.id, params=[
                            "MSn Spectrum",
                            {"ms level": 2},
                            {"total ion current": sum(prod.intensity_array)}
                         ],
                         # Include precursor information
                         precursor_information={
                            "mz": prod.precursor_mz,
                            "intensity": prod.precursor_intensity,
                            "charge": prod.precursor_charge,
                            "scan_id": prod.precursor_scan_id,
                            "activation": ["beam-type collisional dissociation", {"collision energy": 25}],
                            "isolation_window": [prod.precursor_mz - 1, prod.precursor_mz, prod.precursor_mz + 1]
                         })

Citing

If you use psims in an academic project, please cite:

Klein, J. A., & Zaia, J. (2018). psims - A declarative writer for mzML and mzIdentML for Python. Molecular & Cellular Proteomics, mcp.RP118.001070. https://doi.org/10.1074/mcp.RP118.001070

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

psims-1.3.1.tar.gz (14.9 MB view details)

Uploaded Source

Built Distribution

psims-1.3.1-py3-none-any.whl (14.9 MB view details)

Uploaded Python 3

File details

Details for the file psims-1.3.1.tar.gz.

File metadata

  • Download URL: psims-1.3.1.tar.gz
  • Upload date:
  • Size: 14.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.0

File hashes

Hashes for psims-1.3.1.tar.gz
Algorithm Hash digest
SHA256 a6da07168737bdae3fdf0ee9e422be86990e004081c27027d50acecb3be8c248
MD5 f97959cf9ef8519fbfee51fdc776f66b
BLAKE2b-256 3733c4c6dbf1bc1879a6506a16c6682b3faac4e28638d6a937f73c6c754ccc5b

See more details on using hashes here.

File details

Details for the file psims-1.3.1-py3-none-any.whl.

File metadata

  • Download URL: psims-1.3.1-py3-none-any.whl
  • Upload date:
  • Size: 14.9 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.0

File hashes

Hashes for psims-1.3.1-py3-none-any.whl
Algorithm Hash digest
SHA256 fea148df446cf0e6808701e83b63e2e6b2955e0bc9f1adfe9fba9c335c9a21e8
MD5 d7c7c7975f254a99f40fdb9e872241b8
BLAKE2b-256 dd82b3e3d121e1feca44bc65c4da081fb0b7b4d7b147d4f59723d24918405cf8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page