Skip to main content

Python-based implementation of PSyKI, i.e. a Platform for Symbolic Knowledge Injection

Project description

PSyKI

Some quick links:

Reference paper

Matteo Magnini, Giovanni Ciatto, Andrea Omicini. "[On the Design of PSyKI: A Platform for Symbolic Knowledge Injection into Sub-Symbolic Predictors]", in: Proceedings of the 4th International Workshop on EXplainable and TRAnsparent AI and Multi-Agent Systems, 2022.

Bibtex:

@inproceedings{PsykiExtraamas2022,
	keywords = {Symbolic Knowledge Injection,  Explainable AI, XAI, Neural Networks, PSyKI},
	year = 2022,
	talk = {Talks.PsykiExtraamas2022},
	author = {Magnini, Matteo and Ciatto, Giovanni and Omicini, Andrea},
	venue_e = {Events.Extraamas2022},
	sort = {inproceedings},
	publisher = {Springer},
	status = {In press},
	title = {On the Design of PSyKI: a Platform for Symbolic Knowledge Injection into Sub-Symbolic Predictors},
	booktitle = {Proceedings of the 4th International Workshop on EXplainable and TRAnsparent AI and Multi-Agent Systems}
}

Intro

PSyKI (Platform for Symbolic Knowledge Injection) is a library for Symbolic Knowledge Injection (SKI) into sub-symbolic predictors. PSyKI offers SKI algorithms (injectors), and it is open to extendability.

An Injector is a SKI algorithm that takes a sub-symbolic predictor and prior symbolic knowledge, and it creates a new predictor through method inject. Knowledge can be represented in many ways, the most common is the representation via textual logic formulae. Currently, (stratified) Datalog formulae (allowing negation) are supported. Knowledge in this form should be processed into a visitable data structure Formula that is specific w.r.t. the representation. User can use the Antlr adapter to get proper Formula from the AST generated by antlr4. Knowledge represented via Formula object can be embedded in a sub-symbolic form through a Fuzzifier. A Fuzzifier is a visitor for Formula objects that outputs a sub-symbolic object that can be injected into a sub-symbolic predictor.

PSyKE class diagram

Currently, implemented injectors are:

  • LambdaLayer, performs injection into NN of any shape via constraining;
  • NetworkComposer, performs injection into NN of any shape via structuring.

Users

PSyKI is deployed as a library on Pypi, and it can therefore be installed as Python pachage by running:

pip install psyki

Requirements

  • python 3.9+
  • java 11 (for test and demo)
  • antlr4-python3-runtime 4.9.3 (for test and demo)
  • tensorflow 2.6.2
  • numpy 1.19.2
  • scikit-learn 1.0.1
  • pandas 1.3.4

Demo

demo/demo.ipynb is a notebook that shows how injection is applied to a network for poker hand classification task. Rules are defined in resources/rules/poker.csv.

Example of injection:

injector = NetworkComposer(model, feature_mapping)
predictor = injector.inject(formulae)
predictor.compile(optimizer=Adam(), loss='sparse_categorical_crossentropy', metrics=['accuracy'])
predictor.fit(train_x, train_y, verbose=1, batch_size=32, epochs=100)

Output:

Epoch 1/100
782/782 [==============================] - 3s 906us/step - loss: 1.0029 - accuracy: 0.5090
Epoch 2/100
782/782 [==============================] - 1s 902us/step - loss: 0.9579 - accuracy: 0.5381
Epoch 3/100
782/782 [==============================] - 1s 899us/step - loss: 0.9447 - accuracy: 0.5451
Epoch 4/100
782/782 [==============================] - 1s 903us/step - loss: 0.9347 - accuracy: 0.5534
Epoch 5/100
782/782 [==============================] - 1s 896us/step - loss: 0.9249 - accuracy: 0.5547
Epoch 6/100
782/782 [==============================] - 1s 897us/step - loss: 0.9153 - accuracy: 0.5625
loss, accuracy = predictor.evaluate(test_x, test_y)
print('Loss: ' + str(loss))
print('Accuracy: ' + str(accuracy))

Output:

31250/31250 [==============================] - 26s 822us/step - loss: 0.0660 - accuracy: 0.9862
Loss: 0.06597686558961868
Accuracy: 0.9862030148506165

Developers

Working with PSyKE codebase requires a number of tools to be installed:

  • Python 3.9+
  • JDK 11+ (please ensure the JAVA_HOME environment variable is properly configured)
  • Git 2.20+

Develop PSyKI with PyCharm

To participate in the development of PSyKI, we suggest the PyCharm IDE.

Importing the project

  1. Clone this repository in a folder of your preference using git_clone appropriately
  2. Open PyCharm
  3. Select Open
  4. Navigate your file system and find the folder where you cloned the repository
  5. Click Open

Developing the project

Contributions to this project are welcome. Just some rules:

  • We use git flow, so if you write new features, please do so in a separate feature/ branch
  • We recommend forking the project, developing your stuff, then contributing back vie pull request
  • Commit often
  • Stay in sync with the develop (or main | master) branch (pull frequently if the build passes)
  • Do not introduce low quality or untested code

Issue tracking

If you meet some problem in using or developing PSyKE, you are encouraged to signal it through the project "Issues" section on GitHub.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

psyki-0.2.1.dev25.tar.gz (35.5 kB view details)

Uploaded Source

Built Distribution

psyki-0.2.1.dev25-py3-none-any.whl (32.3 kB view details)

Uploaded Python 3

File details

Details for the file psyki-0.2.1.dev25.tar.gz.

File metadata

  • Download URL: psyki-0.2.1.dev25.tar.gz
  • Upload date:
  • Size: 35.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.7

File hashes

Hashes for psyki-0.2.1.dev25.tar.gz
Algorithm Hash digest
SHA256 2e9f57514522888a63ca6faac88e72c7880a6e90d72e49daba87cd65b56be1d6
MD5 7326aa534d99f775a2a4ac9015058873
BLAKE2b-256 519c713ab3b85b7cf900d2654643e792059f99b0e1b741b91d2137822238c71a

See more details on using hashes here.

File details

Details for the file psyki-0.2.1.dev25-py3-none-any.whl.

File metadata

  • Download URL: psyki-0.2.1.dev25-py3-none-any.whl
  • Upload date:
  • Size: 32.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.7

File hashes

Hashes for psyki-0.2.1.dev25-py3-none-any.whl
Algorithm Hash digest
SHA256 4d6441c8d31777f02f7011fcebfc50c287c064337db86e67f1f03906f02c539d
MD5 0d0d2413ba7e47e0893c79873012811c
BLAKE2b-256 2065aa0d5cb780828d30c863680b31e7c512b441cb10a415d43a7580754d2c4c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page