Skip to main content

Python-based implementation of PSyKI, i.e. a Platform for Symbolic Knowledge Injection

Project description

PSyKI

Some quick links:

Reference paper

Matteo Magnini, Giovanni Ciatto, Andrea Omicini. "[On the Design of PSyKI: A Platform for Symbolic Knowledge Injection into Sub-Symbolic Predictors]", in: Proceedings of the 4th International Workshop on EXplainable and TRAnsparent AI and Multi-Agent Systems, 2022.

Bibtex:

@inproceedings{PsykiExtraamas2022,
	keywords = {Symbolic Knowledge Injection,  Explainable AI, XAI, Neural Networks, PSyKI},
	year = 2022,
	talk = {Talks.PsykiExtraamas2022},
	author = {Magnini, Matteo and Ciatto, Giovanni and Omicini, Andrea},
	venue_e = {Events.Extraamas2022},
	sort = {inproceedings},
	publisher = {Springer},
	status = {In press},
	title = {On the Design of PSyKI: a Platform for Symbolic Knowledge Injection into Sub-Symbolic Predictors},
	booktitle = {Proceedings of the 4th International Workshop on EXplainable and TRAnsparent AI and Multi-Agent Systems}
}

Intro

PSyKI (Platform for Symbolic Knowledge Injection) is a library for Symbolic Knowledge Injection (SKI) into sub-symbolic predictors. PSyKI offers SKI algorithms (injectors), and it is open to extendability.

An Injector is a SKI algorithm that takes a sub-symbolic predictor and prior symbolic knowledge, and it creates a new predictor through method inject. Knowledge can be represented in many ways, the most common is the representation via textual logic formulae. Currently, (stratified) Datalog formulae (allowing negation) are supported. Knowledge in this form should be processed into a visitable data structure Formula that is specific w.r.t. the representation. User can use the Antlr adapter to get proper Formula from the AST generated by antlr4. Knowledge represented via Formula object can be embedded in a sub-symbolic form through a Fuzzifier. A Fuzzifier is a visitor for Formula objects that outputs a sub-symbolic object that can be injected into a sub-symbolic predictor.

PSyKE class diagram

Currently, implemented injectors are:

  • KBANN, one of the first injector introduced in literature;
  • LambdaLayer, performs injection into NN of any shape via constraining;
  • NetworkComposer, performs injection into NN of any shape via structuring.

Users

PSyKI is deployed as a library on Pypi, and it can therefore be installed as Python pachage by running:

pip install psyki

Requirements

  • python 3.9+
  • java 11 (for test)
  • antlr4-python3-runtime 4.9.3 (for test)
  • tensorflow 2.7.0
  • numpy 1.22.3
  • scikit-learn 1.0.2
  • pandas 1.4.2

Examples

Example of injection:

injector = NetworkComposer(model, feature_mapping)
predictor = injector.inject(formulae)
predictor.compile(optimizer=Adam(), loss='sparse_categorical_crossentropy', metrics=['accuracy'])
predictor.fit(train_x, train_y, verbose=1, batch_size=32, epochs=100)

Output:

Epoch 1/100
782/782 [==============================] - 3s 906us/step - loss: 1.0029 - accuracy: 0.5090
Epoch 2/100
782/782 [==============================] - 1s 902us/step - loss: 0.9579 - accuracy: 0.5381
Epoch 3/100
782/782 [==============================] - 1s 899us/step - loss: 0.9447 - accuracy: 0.5451
Epoch 4/100
782/782 [==============================] - 1s 903us/step - loss: 0.9347 - accuracy: 0.5534
Epoch 5/100
782/782 [==============================] - 1s 896us/step - loss: 0.9249 - accuracy: 0.5547
Epoch 6/100
782/782 [==============================] - 1s 897us/step - loss: 0.9153 - accuracy: 0.5625
loss, accuracy = predictor.evaluate(test_x, test_y)
print('Loss: ' + str(loss))
print('Accuracy: ' + str(accuracy))

Output:

31250/31250 [==============================] - 26s 822us/step - loss: 0.0660 - accuracy: 0.9862
Loss: 0.06597686558961868
Accuracy: 0.9862030148506165

Developers

Working with PSyKE codebase requires a number of tools to be installed:

  • Python 3.9+
  • JDK 11+ (please ensure the JAVA_HOME environment variable is properly configured)
  • Git 2.20+

Develop PSyKI with PyCharm

To participate in the development of PSyKI, we suggest the PyCharm IDE.

Importing the project

  1. Clone this repository in a folder of your preference using git_clone appropriately
  2. Open PyCharm
  3. Select Open
  4. Navigate your file system and find the folder where you cloned the repository
  5. Click Open

Developing the project

Contributions to this project are welcome. Just some rules:

  • We use git flow, so if you write new features, please do so in a separate feature/ branch
  • We recommend forking the project, developing your stuff, then contributing back vie pull request
  • Commit often
  • Stay in sync with the develop (or main | master) branch (pull frequently if the build passes)
  • Do not introduce low quality or untested code

Issue tracking

If you meet some problem in using or developing PSyKE, you are encouraged to signal it through the project "Issues" section on GitHub.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

psyki-0.2.18.dev2.tar.gz (40.9 kB view details)

Uploaded Source

Built Distribution

psyki-0.2.18.dev2-py3-none-any.whl (37.9 kB view details)

Uploaded Python 3

File details

Details for the file psyki-0.2.18.dev2.tar.gz.

File metadata

  • Download URL: psyki-0.2.18.dev2.tar.gz
  • Upload date:
  • Size: 40.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.8

File hashes

Hashes for psyki-0.2.18.dev2.tar.gz
Algorithm Hash digest
SHA256 6c420d9bac314b04732f21072ddba5f9f0a97bd6fd67a5947b7b21bbbbeeac46
MD5 62ecc5a6e6359b8f76ae76e2770e6fdc
BLAKE2b-256 f798dcfa8146408d6f84d421907544ab7a80117b244902be08f0f4297f5575a6

See more details on using hashes here.

File details

Details for the file psyki-0.2.18.dev2-py3-none-any.whl.

File metadata

  • Download URL: psyki-0.2.18.dev2-py3-none-any.whl
  • Upload date:
  • Size: 37.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.8

File hashes

Hashes for psyki-0.2.18.dev2-py3-none-any.whl
Algorithm Hash digest
SHA256 ab8f882018f92f9c41ba0f5f01850d33c750839816b1b77b65daf30d4d18557e
MD5 425ce9d9c27412bdf6e11245db486bfa
BLAKE2b-256 22686a8e6430f0d818fe40ed33dd78fd9aedef8ba849747e0b1bf4c437b53acf

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page