Skip to main content

A package for SPSS methods

Project description

Psython

This package include SPSS related calculations done using python.

Installation

pip install psython

Importing

import psython as psy

Cronbach's alpha - with "if deleted"

This package is for calculating Cronbach's alpha of an entire dataset with a "if deleted" table for finding items that should be removed.

The package is using the pingouin package for the actuall calculation of Cronbach's alpha.

Usage

Here is an example of the SAQ DataFrame (q3r = q3 reversed):

q1 q2 q4 q5 q6 q7 q8 q9 q10 q11 ... q15 q16 q17 q18 q19 q20 q21 q22 q23 q3r
0 2 1 2 2 2 3 1 1 2 1 ... 2 3 1 2 3 2 2 2 5 2
1 1 1 3 2 2 2 2 5 2 2 ... 4 3 2 2 3 4 4 4 2 2
2 2 3 2 4 1 2 2 2 2 3 ... 2 3 2 3 1 4 3 2 2 4
3 3 1 4 3 3 4 2 2 4 2 ... 3 3 2 4 2 4 4 4 3 5
4 2 1 2 2 3 3 2 4 2 2 ... 2 2 2 3 3 4 2 4 4 3

5 rows × 23 columns

psy.cronbach_alpha_scale_if_deleted(df)

Where df is the items dataframe (each item as a column) and the function will return two objects - the Cronbach's alpha of the entire DataFrame at position 0 and the table of the "if delete" items in position 1.

Item Scale Mean if Item Deleted Scale Variance if Item Deleted Corrected Item-Total Correlation Cronbach's Alpha if Item Deleted
0 q1 59.892260 90.121072 0.520928 0.791887
1 q2 60.642940 101.063899 -0.163158 0.819978
2 q4 59.480358 87.967999 0.569241 0.788177
3 q5 59.544146 89.303401 0.480579 0.792419
4 q6 60.039284 87.605071 0.482416 0.791397
5 q7 59.342668 85.655685 0.594245 0.785032
6 q8 60.029560 89.900293 0.503704 0.792141
7 q9 59.420070 100.881838 -0.137191 0.828613
8 q10 59.985609 92.232867 0.355784 0.798693
9 q11 60.011280 88.790145 0.568318 0.789112
10 q12 59.106962 88.451979 0.562942 0.788889
11 q13 59.817192 87.839720 0.576902 0.787798
12 q14 59.390121 87.491716 0.562476 0.787931
13 q15 59.500194 88.766051 0.484296 0.791916
14 q16 59.387009 88.329154 0.570772 0.788520
15 q17 59.799689 88.441961 0.587849 0.788165
16 q18 59.697783 85.993065 0.608925 0.784771
17 q19 59.974329 104.442142 -0.295795 0.832243
18 q20 58.642163 91.699140 0.313782 0.800711
19 q21 59.095683 87.678779 0.561128 0.788157
20 q22 59.378452 101.109248 -0.152704 0.823798
21 q23 58.831972 98.820783 -0.044039 0.818680
22 q3r 58.851809 89.021221 0.434762 0.794258

Reliability: Split-Half

result = psy.split_half_reliability(df)

Will return an array of values:

pearson

spearman_brown

a_croncha_1

a_croncha_2

N1

N2

table

print(result.table)

Will print the output in the familiar SPSS format.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

psython-0.0.8.tar.gz (4.6 kB view details)

Uploaded Source

Built Distribution

psython-0.0.8-py3-none-any.whl (4.6 kB view details)

Uploaded Python 3

File details

Details for the file psython-0.0.8.tar.gz.

File metadata

  • Download URL: psython-0.0.8.tar.gz
  • Upload date:
  • Size: 4.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.5

File hashes

Hashes for psython-0.0.8.tar.gz
Algorithm Hash digest
SHA256 b6465795a49fa9d158bc74407b16b0b03fbdb6a906bed1ce4177106600508442
MD5 5092220ea88f64741fb449aa87504748
BLAKE2b-256 19b53f83b5225e566d4fb0f90822b09b35e12646115aaffb839ee8ad4f13cc29

See more details on using hashes here.

File details

Details for the file psython-0.0.8-py3-none-any.whl.

File metadata

  • Download URL: psython-0.0.8-py3-none-any.whl
  • Upload date:
  • Size: 4.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.5

File hashes

Hashes for psython-0.0.8-py3-none-any.whl
Algorithm Hash digest
SHA256 12d9248c7c50c5101875d0dcd04904e201348808a80e246e20ac3b890d06487d
MD5 15bb75f3db31f70e4a33d26a8d82e9e4
BLAKE2b-256 32689e3f4dc01d869a20175c7881d315c9714e53014e172b012bdc143331a023

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page