Gaze estimation using MPIIGaze and MPIIFaceGaze
Project description
A demo program of MPIIGaze and MPIIFaceGaze
With this program, you can runs gaze estimation on images and videos. By default, the video from a webcam is used.
(The original video is from this public domain.)
(The original image is from this public domain.)
To train a model, use this repository.
Quick start
Installation
pip install ptgaze
Run demo
ptgaze --mode eye
Usage
usage: ptgaze [-h] [--config CONFIG] [--mode {eye,face}]
[--face-detector {dlib,face_alignment_dlib,face_alignement_sfd}]
[--device {cpu,cuda}] [--image IMAGE] [--video VIDEO]
[--camera CAMERA] [--output-dir OUTPUT_DIR] [--ext {avi,mp4}]
[--no-screen] [--debug]
optional arguments:
-h, --help show this help message and exit
--config CONFIG Config file for YACS. When using a config file, all
the other commandline arguments are ignored. See https
://github.com/hysts/pytorch_mpiigaze_demo/configs/demo
_mpiigaze.yaml
--mode {eye,face} With 'eye', MPIIGaze model will be used. With 'face',
MPIIFaceGaze model will be used. (default: 'eye')
--face-detector {dlib,face_alignment_dlib,face_alignement_sfd}
The method used to detect faces and find face
landmarks (default: 'dlib')
--device {cpu,cuda} Device used for model inference.
--image IMAGE Path to an input image file.
--video VIDEO Path to an input video file.
--camera CAMERA Camera calibration file. See https://github.com/hysts/
pytorch_mpiigaze_demo/ptgaze/data/calib/sample_params.
yaml
--output-dir OUTPUT_DIR, -o OUTPUT_DIR
If specified, the overlaid video will be saved to this
directory.
--ext {avi,mp4}, -e {avi,mp4}
Output video file extension.
--no-screen If specified, the video is not displayed on screen,
and saved to the output directory.
--debug
While processing an image or video, press the following keys on the window to show or hide intermediate results:
l
: landmarksh
: head poset
: projected points of 3D face modelb
: face bounding box
References
- Zhang, Xucong, Yusuke Sugano, Mario Fritz, and Andreas Bulling. "Appearance-based Gaze Estimation in the Wild." Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015. arXiv:1504.02863, Project Page
- Zhang, Xucong, Yusuke Sugano, Mario Fritz, and Andreas Bulling. "It's Written All Over Your Face: Full-Face Appearance-Based Gaze Estimation." Proc. of the IEEE Conference on Computer Vision and Pattern Recognition Workshops(CVPRW), 2017. arXiv:1611.08860, Project Page
- Zhang, Xucong, Yusuke Sugano, Mario Fritz, and Andreas Bulling. "MPIIGaze: Real-World Dataset and Deep Appearance-Based Gaze Estimation." IEEE transactions on pattern analysis and machine intelligence 41 (2017). arXiv:1711.09017
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
ptgaze-0.0.3.tar.gz
(19.3 kB
view details)
File details
Details for the file ptgaze-0.0.3.tar.gz
.
File metadata
- Download URL: ptgaze-0.0.3.tar.gz
- Upload date:
- Size: 19.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.1.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 743caf22eb8fe2c3c3b00ce2d3576c1e9ddc41f6fe04587cafe226358b85e735 |
|
MD5 | c688f7b16132a24254b20ecb19eec5f0 |
|
BLAKE2b-256 | c81aae5808526818b7a4ad8e7bc08586d50dc5a2ba056c36b3004b0b810d046a |