Skip to main content

Gaze estimation using MPIIGaze and MPIIFaceGaze

Project description

A demo program of gaze estimation models (MPIIGaze, MPIIFaceGaze, ETH-XGaze)

PyPI version

With this program, you can run gaze estimation on images and videos. By default, the video from a webcam will be used.

ETH-XGaze video01 result ETH-XGaze video02 result ETH-XGaze video03 result

MPIIGaze video00 result MPIIFaceGaze video00 result

MPIIGaze image00 result

To train a model for MPIIGaze and MPIIFaceGaze, use this repository.

Quick start

Installation

pip install ptgaze

Run demo

ptgaze --mode eth-xgaze

Usage

usage: ptgaze [-h] [--config CONFIG] [--mode {mpiigaze,mpiifacegaze,eth-xgaze}]
              [--face-detector {dlib,face_alignment_dlib,face_alignment_sfd,mediapipe}]
              [--device {cpu,cuda}] [--image IMAGE] [--video VIDEO] [--camera CAMERA]
              [--output-dir OUTPUT_DIR] [--ext {avi,mp4}] [--no-screen] [--debug]

optional arguments:
  -h, --help            show this help message and exit
  --config CONFIG       Config file. When using a config file, all the other commandline arguments
                        are ignored. See
                        https://github.com/hysts/pytorch_mpiigaze_demo/ptgaze/data/configs/eth-
                        xgaze.yaml
  --mode {mpiigaze,mpiifacegaze,eth-xgaze}
                        With 'mpiigaze', MPIIGaze model will be used. With 'mpiifacegaze',
                        MPIIFaceGaze model will be used. With 'eth-xgaze', ETH-XGaze model will be
                        used. (default: 'eth-xgaze')
  --face-detector {dlib,face_alignment_dlib,face_alignment_sfd,mediapipe}
                        The method used to detect faces and find face landmarks (default:
                        'mediapipe')
  --device {cpu,cuda}   Device used for model inference.
  --image IMAGE         Path to an input image file.
  --video VIDEO         Path to an input video file.
  --camera CAMERA       Camera calibration file. See https://github.com/hysts/pytorch_mpiigaze_demo/
                        ptgaze/data/calib/sample_params.yaml
  --output-dir OUTPUT_DIR, -o OUTPUT_DIR
                        If specified, the overlaid video will be saved to this directory.
  --ext {avi,mp4}, -e {avi,mp4}
                        Output video file extension.
  --no-screen           If specified, the video is not displayed on screen, and saved to the output
                        directory.
  --debug

While processing an image or video, press the following keys on the window to show or hide intermediate results:

  • l: landmarks
  • h: head pose
  • t: projected points of 3D face model
  • b: face bounding box

References

  • Zhang, Xucong, Seonwook Park, Thabo Beeler, Derek Bradley, Siyu Tang, and Otmar Hilliges. "ETH-XGaze: A Large Scale Dataset for Gaze Estimation under Extreme Head Pose and Gaze Variation." In European Conference on Computer Vision (ECCV), 2020. arXiv:2007.15837, Project Page, GitHub
  • Zhang, Xucong, Yusuke Sugano, Mario Fritz, and Andreas Bulling. "Appearance-based Gaze Estimation in the Wild." Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015. arXiv:1504.02863, Project Page
  • Zhang, Xucong, Yusuke Sugano, Mario Fritz, and Andreas Bulling. "It's Written All Over Your Face: Full-Face Appearance-Based Gaze Estimation." Proc. of the IEEE Conference on Computer Vision and Pattern Recognition Workshops(CVPRW), 2017. arXiv:1611.08860, Project Page
  • Zhang, Xucong, Yusuke Sugano, Mario Fritz, and Andreas Bulling. "MPIIGaze: Real-World Dataset and Deep Appearance-Based Gaze Estimation." IEEE transactions on pattern analysis and machine intelligence 41 (2017). arXiv:1711.09017
  • Zhang, Xucong, Yusuke Sugano, and Andreas Bulling. "Evaluation of Appearance-Based Methods and Implications for Gaze-Based Applications." Proc. ACM SIGCHI Conference on Human Factors in Computing Systems (CHI), 2019. arXiv, code

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ptgaze-0.2.2.tar.gz (25.9 kB view details)

Uploaded Source

Built Distribution

ptgaze-0.2.2-py3-none-any.whl (32.8 kB view details)

Uploaded Python 3

File details

Details for the file ptgaze-0.2.2.tar.gz.

File metadata

  • Download URL: ptgaze-0.2.2.tar.gz
  • Upload date:
  • Size: 25.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.2

File hashes

Hashes for ptgaze-0.2.2.tar.gz
Algorithm Hash digest
SHA256 bfcf8141fd530efbc74742d121dbfad49477937c56613a57dde05581eac1f3f6
MD5 f9157dc410e972ec0f303ec0817b7bfe
BLAKE2b-256 4f00ae2a5e4d8fbddf27224f295c3f839785f5d58c28abc19e1783adaa27aa5f

See more details on using hashes here.

File details

Details for the file ptgaze-0.2.2-py3-none-any.whl.

File metadata

  • Download URL: ptgaze-0.2.2-py3-none-any.whl
  • Upload date:
  • Size: 32.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.2

File hashes

Hashes for ptgaze-0.2.2-py3-none-any.whl
Algorithm Hash digest
SHA256 244272fd519fa8cdef8e14104aebb64375afb8d19d87c2e2da0fa2e4906cac20
MD5 b03c810295f3acc5611a39e0f955da15
BLAKE2b-256 1420c46212bfbb6a3fbb72ccba9cab80c06aa15d54f8099b0a2f02681cc29c78

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page