Skip to main content

Gaze estimation using MPIIGaze and MPIIFaceGaze

Project description

A demo program of gaze estimation models (MPIIGaze, MPIIFaceGaze, ETH-XGaze)

PyPI version Downloads Open In Colab MIT License GitHub stars

With this program, you can run gaze estimation on images and videos. By default, the video from a webcam will be used.

ETH-XGaze video01 result ETH-XGaze video02 result ETH-XGaze video03 result

MPIIGaze video00 result MPIIFaceGaze video00 result

MPIIGaze image00 result

To train a model for MPIIGaze and MPIIFaceGaze, use this repository. You can also use this repo to train a model with ETH-XGaze dataset.

Quick start

Installation

pip install ptgaze

Run demo

ptgaze --mode eth-xgaze

Usage

usage: ptgaze [-h] [--config CONFIG] [--mode {mpiigaze,mpiifacegaze,eth-xgaze}]
              [--face-detector {dlib,face_alignment_dlib,face_alignment_sfd,mediapipe}]
              [--device {cpu,cuda}] [--image IMAGE] [--video VIDEO] [--camera CAMERA]
              [--output-dir OUTPUT_DIR] [--ext {avi,mp4}] [--no-screen] [--debug]

optional arguments:
  -h, --help            show this help message and exit
  --config CONFIG       Config file. When using a config file, all the other commandline arguments
                        are ignored. See
                        https://github.com/hysts/pytorch_mpiigaze_demo/ptgaze/data/configs/eth-
                        xgaze.yaml
  --mode {mpiigaze,mpiifacegaze,eth-xgaze}
                        With 'mpiigaze', MPIIGaze model will be used. With 'mpiifacegaze',
                        MPIIFaceGaze model will be used. With 'eth-xgaze', ETH-XGaze model will be
                        used.
  --face-detector {dlib,face_alignment_dlib,face_alignment_sfd,mediapipe}
                        The method used to detect faces and find face landmarks (default:
                        'mediapipe')
  --device {cpu,cuda}   Device used for model inference.
  --image IMAGE         Path to an input image file.
  --video VIDEO         Path to an input video file.
  --camera CAMERA       Camera calibration file. See https://github.com/hysts/pytorch_mpiigaze_demo/
                        ptgaze/data/calib/sample_params.yaml
  --output-dir OUTPUT_DIR, -o OUTPUT_DIR
                        If specified, the overlaid video will be saved to this directory.
  --ext {avi,mp4}, -e {avi,mp4}
                        Output video file extension.
  --no-screen           If specified, the video is not displayed on screen, and saved to the output
                        directory.
  --debug

While processing an image or video, press the following keys on the window to show or hide intermediate results:

  • l: landmarks
  • h: head pose
  • t: projected points of 3D face model
  • b: face bounding box

References

  • Zhang, Xucong, Seonwook Park, Thabo Beeler, Derek Bradley, Siyu Tang, and Otmar Hilliges. "ETH-XGaze: A Large Scale Dataset for Gaze Estimation under Extreme Head Pose and Gaze Variation." In European Conference on Computer Vision (ECCV), 2020. arXiv:2007.15837, Project Page, GitHub
  • Zhang, Xucong, Yusuke Sugano, Mario Fritz, and Andreas Bulling. "Appearance-based Gaze Estimation in the Wild." Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015. arXiv:1504.02863, Project Page
  • Zhang, Xucong, Yusuke Sugano, Mario Fritz, and Andreas Bulling. "It's Written All Over Your Face: Full-Face Appearance-Based Gaze Estimation." Proc. of the IEEE Conference on Computer Vision and Pattern Recognition Workshops(CVPRW), 2017. arXiv:1611.08860, Project Page
  • Zhang, Xucong, Yusuke Sugano, Mario Fritz, and Andreas Bulling. "MPIIGaze: Real-World Dataset and Deep Appearance-Based Gaze Estimation." IEEE transactions on pattern analysis and machine intelligence 41 (2017). arXiv:1711.09017
  • Zhang, Xucong, Yusuke Sugano, and Andreas Bulling. "Evaluation of Appearance-Based Methods and Implications for Gaze-Based Applications." Proc. ACM SIGCHI Conference on Human Factors in Computing Systems (CHI), 2019. arXiv, code

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ptgaze-0.2.5.tar.gz (26.3 kB view details)

Uploaded Source

Built Distribution

ptgaze-0.2.5-py3-none-any.whl (33.0 kB view details)

Uploaded Python 3

File details

Details for the file ptgaze-0.2.5.tar.gz.

File metadata

  • Download URL: ptgaze-0.2.5.tar.gz
  • Upload date:
  • Size: 26.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.2

File hashes

Hashes for ptgaze-0.2.5.tar.gz
Algorithm Hash digest
SHA256 cc86ebf36790d3e75f03c2f42576000ffe779058147f6a14a3b21adf67671d37
MD5 c9f6a07c0ce829f61a7a356a990982c4
BLAKE2b-256 fdc9d76256642370b0e466d2bc35eff2cbabbb7a235974214f221d3b50f4b5f8

See more details on using hashes here.

File details

Details for the file ptgaze-0.2.5-py3-none-any.whl.

File metadata

  • Download URL: ptgaze-0.2.5-py3-none-any.whl
  • Upload date:
  • Size: 33.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.2

File hashes

Hashes for ptgaze-0.2.5-py3-none-any.whl
Algorithm Hash digest
SHA256 3c73a493030e3ef34a859c7d4fdd368d86fb18c84cf65f69a6caf41a8841831b
MD5 3988938a925d4261f65442e07354be26
BLAKE2b-256 9b626265d8dee826e4a47562cce53f25e82ea99e8b92eac92073d99f95bf5635

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page