Skip to main content

Differentiable and gpu enabled fast wavelet transforms in PyTorch

Project description

GitHub Actions PyPI Versions PyPI - Project PyPI - License Documentation Status

Welcome to the PyTorch (adaptive) wavelet toolbox. This package implements:

  • the fast wavelet transform (fwt) implemented in wavedec.

  • the inverse fwt can be used by calling waverec.

  • the 2d fwt is called wavedec2

  • and inverse 2d fwt waverec2.

  • 1d sparse-matrix fast wavelet transforms with boundary filters.

  • 2d sparse-matrix transforms with boundary filters (experimental).

  • single and two-dimensional wavelet packet forward transforms.

  • adaptive wavelet support (experimental).

This toolbox supports pywt-wavelets. Complete documentation is available: https://pytorch-wavelet-toolbox.readthedocs.io/en/latest/ptwt.html

Installation

Install the toolbox via pip or clone this repository. In order to use pip, type:

$ pip install ptwt

You can remove it later by typing pip uninstall ptwt.

Example usage:

import torch
import numpy as np
import pywt
import ptwt  # use " from src import ptwt " if you cloned the repo instead of using pip.

# generate an input of even length.
data = np.array([0, 1, 2, 3, 4, 5, 5, 4, 3, 2, 1, 0])
data_torch = torch.from_numpy(data.astype(np.float32))
wavelet = pywt.Wavelet('haar')

# compare the forward fwt coefficients
print(pywt.wavedec(data, wavelet, mode='zero', level=2))
print(ptwt.wavedec(data_torch, wavelet, mode='zero', level=2))

# invert the fwt.
print(ptwt.waverec(ptwt.wavedec(data_torch, wavelet, mode='zero', level=2), wavelet))

Sparse-Matrices

In addition to convolution and padding approaches, sparse-matrix-based code with boundary wavelet support is available. Generate 1d sparse matrix forward and backward transforms with the MatrixWavedec and MatrixWaverec classes. Continuing the example above try for example:

# forward
matrix_wavedec = ptwt.MatrixWavedec(wavelet, level=2)
coeff = matrix_wavedec(data_torch)
print(coeff)
# backward
matrix_waverec = ptwt.MatrixWaverec(wavelet, level=2)
rec = matrix_waverec(coeff)
print(rec)

The process for the 2d transforms MatrixWavedec2d, MatrixWaverec2d, works similarly.

Adaptive Wavelets

Experimental code to train an adaptive wavelet layer in PyTorch is available in the examples folder. In addition to static wavelets from pywt,

  • Adaptive product-filters

  • and optimizable orthogonal-wavelets are supported.

See https://github.com/v0lta/PyTorch-Wavelet-Toolbox/tree/main/examples for a complete implementation.

Testing

The tests folder contains multiple tests to allow independent verification of this toolbox. After cloning the repository, and moving into the main directory, and installing tox with pip install tox run:

$ tox -e py

📖 Citation

If you find this work useful, please consider citing:

@phdthesis{handle:20.500.11811/9245,
  urn: https://nbn-resolving.org/urn:nbn:de:hbz:5-63361,
  author = {{Moritz Wolter}},
  title = {Frequency Domain Methods in Recurrent Neural Networks for Sequential Data Processing},
  school = {Rheinische Friedrich-Wilhelms-Universität Bonn},
  year = 2021,
  month = jul,
  url = {https://hdl.handle.net/20.500.11811/9245}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ptwt-0.0.12.tar.gz (28.7 kB view details)

Uploaded Source

Built Distribution

ptwt-0.0.12-py3-none-any.whl (34.8 kB view details)

Uploaded Python 3

File details

Details for the file ptwt-0.0.12.tar.gz.

File metadata

  • Download URL: ptwt-0.0.12.tar.gz
  • Upload date:
  • Size: 28.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.5

File hashes

Hashes for ptwt-0.0.12.tar.gz
Algorithm Hash digest
SHA256 bef8b3f170bd54fd4dfe5ad75131273824c5fa8f37029296e97a05588dea05da
MD5 8a769cd33bf5ee54069065bdc88dc355
BLAKE2b-256 698fbefb809abdde2315aa9369867090fb298fbd79a6b3a415658f74efbf171f

See more details on using hashes here.

File details

Details for the file ptwt-0.0.12-py3-none-any.whl.

File metadata

  • Download URL: ptwt-0.0.12-py3-none-any.whl
  • Upload date:
  • Size: 34.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.5

File hashes

Hashes for ptwt-0.0.12-py3-none-any.whl
Algorithm Hash digest
SHA256 70f31cfbc890afa1400dedecf543da44dec58a0efc9a3dceca0b85bef96914b8
MD5 5097acb85cc1745677a851a2c77d137b
BLAKE2b-256 9cf4cc329096939efa8622c0caaedac50a1d396cb327ca02caba8a3ed29f09ba

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page