purrsong
Project description
purrsong
Installation
pip install purrsong
Start
import purrsong as ps
ps.__version__
>>> 0.1.6
Create Anaconda Environment(Optional)
conda create -n purrsong python=3.6
conda activate purrsong
Requirments
- tensorflow
- opencv-python
- tqdm
- requests
- pandas
- matplotlib
Auto-download-extract-load of datasets, modelsets
Below function automatically download data or models and save locally If data is already exists, returns data directory or model filepath
import purrsong as ps
model_list = ps.list_models() # or ps.list_models(fresh=True)
print(model_list)
ps.load_model('bbs') # or ps.load_model('bbs', fresh=True)
dataset_list = ps.list_datasets() # or ps.list_datasets(fresh=True)
print(dataset_list)
ps.load_dataset('cat') # or ps.load_dataset('cat', fresh=True)
Manipulating cats dataset
You can play with auto downloaded cats
dataset by below example.
Try changing factor
arg, which will return different size of bounding boxes.
load cats dataset
import purrsong as ps
import matplotlib.pyplot as plt
cats = ps.load_cats()
showing cat image
img = cats[0]['image']
plt.imshow(img)
plt.show()
showing cat image with landmark
img = cats[0]['image']
lmk = cats[0]['landmark']
x, y = lmk.T
plt.imshow(img)
plt.scatter(x, y)
plt.show()
showing cat face image
img = cats.face_img(44) # or img = cats.face_img(idx=44, factor=1.7)
plt.imshow(img)
plt.show()
showing cat left eye image
img = cats.left_eye_img(44) # or img = cats.face_img(idx=44, factor=1.7)
plt.imshow(img)
plt.show()
available data features
import purrsong as ps
cats = ps.load_cats()
cat = cats(0) # or cats(idx=0, factor=1.7)
cat['image'] # cats.image(0)
cat['landmark'] # cats.landmark(0)
cat['face'] # cats.face(0, factor=1.7)
cat['face_bb'] # cats.face_bb(0, factor=1.7)
cat['face_img'] # cats.face_img(0, factor=1.7)
cat['face_lmk'] # cats.face_lmk(0, factor=1.7)
cat['eye'] # cats.eye(0, factor=1.7)
cat['left_eye_bb'] # cats.left_eye_bb(0, factor=1.7)
cat['left_eye_img'] # cats.left_eye_img(0, factor=1.7)
cat['right_eye_bb'] # cats.right_eye_bb(0, factor=1.7)
cat['right_eye_img'] # cats.right_eye_img(0, factor=1.7)
cat['nose'] # cats.nose(0, factor=1.7)
cat['nose_bb'] # cats.nose_bb(0, factor=1.7)
cat['nose_img'] # cats.nose_img(0, factor=1.7)
cat['ear'] # cats.ear(0, factor=1.7)
cat['left_ear_bb'] # cats.left_ear_bb(0, factor=1.7)
cat['left_ear_img'] # cats.left_ear_img(0, factor=1.7)
cat['right_ear_bb'] # cats.right_ear_bb(0, factor=1.7)
cat['right_ear_img'] # cats.right_ear_img(0, factor=1.7)
left dict form is much more intuitive and good
when you have to handle many of features at the same time.
right method way is good when you access specific feature.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
No source distribution files available for this release.See tutorial on generating distribution archives.
Built Distribution
purrsong-0.1.9-py3-none-any.whl
(23.6 kB
view details)
File details
Details for the file purrsong-0.1.9-py3-none-any.whl
.
File metadata
- Download URL: purrsong-0.1.9-py3-none-any.whl
- Upload date:
- Size: 23.6 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.33.0 CPython/3.6.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | dc3cb9be972f50db219a62ffb6a0b0f71e63bdc35b4100c2a9c384443158a4c7 |
|
MD5 | b6c1c8aa0d6d78f7fb24a994daa24455 |
|
BLAKE2b-256 | f3f8bab63207bc54c55377c3df2d2ab995047759e34ce6493f6ff245ad72dbb4 |