Analyze anti-reflection coatings on the air-glass interface of a photovoltaic module.
Project description
pvarc
Analyze anti-reflection coating measurements on the air-glass interface of a solar module
Introduction
Many solar modules have an anti-reflection coating (ARC) on the air-glass interface. This interface most often consists of a ~125 nm layer of porous silica. This package allows the user to simulate the reflection performance of these ARCs. It also provides convenient functions for calculating the solar-weighted photon reflectance which is a good figure-of-merit of the performance of a coating.
Installation
To install using pip, run:
pip install pvarc
To setup a virtual environment using conda/pip, create a virtual environment:
conda create --name pvarc -c conda-forge python=3 numpy pandas scipy matplotlib tqdm colour-science xlrd matplotlib-scalebar
conda activate pvarc
pip install tmm pvarc
Example
The first example uses the ARC reflection model to generate a sythetic reflection curve. The coating parameters are then extracted using a fit to the same model. This example can be used to demonstrate the accuracy with which the true parameters can be extracted.
"""Example for generating a synthetic reflection spectrum, fitting to the
single-layer-coating model and finding the solar weighted photon reflectance
and power enhancement due to the coating.
Todd Karin
"""
import numpy as np
import pandas as pd
import matplotlib
matplotlib.use('TkAgg')
import matplotlib.pyplot as plt
from pvarc import single_interface_reflectance
from pvarc.metrics import solar_weighted_photon_reflectance
from pvarc.fit import fit_arc_reflection_spectrum, arc_reflection_model
from pvarc.materials import refractive_index_glass
from pvarc.oceaninsight import read_oceanview_file
# Create a synthetic reflection curve based on the theoretical model. To run on
# a different dataset, simply import the data as `wavelength` and `reflection`.
wavelength = np.linspace(200, 1100, 500)
param_true = {
'thickness': 125,
'fraction_abraded': 0.05,
'fraction_dust': 0.0,
'porosity': 0.3}
reflection = arc_reflection_model(wavelength, **param_true)
reflection = reflection + np.random.normal(0, 2e-4, wavelength.shape)
# Plot data
plt.figure(0)
plt.clf()
plt.plot(wavelength, 100 * reflection,
label='Data',
color=[0, 0, 0.8])
# Fit model
x, ret = fit_arc_reflection_spectrum(wavelength,
reflection,
model='TPA',
aoi=8,
wavelength_min=450,
wavelength_max=1000,
method='basinhopping',
verbose=True)
wavelength_extend = np.linspace(300, 1250, 1000)
reflection_fit = arc_reflection_model(wavelength_extend, **x)
# Calculate solar weighted photon reflection (SWPR) using fit
swpr = solar_weighted_photon_reflectance(wavelength_extend, reflection_fit)
# Calculate SWPR for glass reference
index_glass = refractive_index_glass(wavelength_extend)
reflection_BK7 = single_interface_reflectance(n0=1.0003,
n1=index_glass,
aoi=8)
swpr_bk7 = solar_weighted_photon_reflectance(wavelength_extend, reflection_BK7)
# Calculate power enhancement due to coating.
power_enchancement = swpr_bk7 - swpr
# Compare fit vs simulated value.
print('--\nComparison of true values vs. best fit')
for p in ['thickness', 'porosity', 'fraction_abraded']:
print('{}.\t True: {:.2f}, Fit: {:.2f}, '.format(p, param_true[p], x[p]))
# Plot theory.
plt.plot(wavelength_extend,
100 * reflection_fit,
label='Fit',
linewidth=3,
color=[1, 0.5, 0, 0.5], )
plt.text(450, 3, '*Best fit parameters*\n' + \
'Thickness: {:.0f} nm\n'.format(x['thickness']) + \
'Porosity: {:.0%}\n'.format(x['porosity']) + \
'Fraction Abraded: {:.1%}\n'.format(x['fraction_abraded']) + \
'SWPR (400-1100 nm): {:.1%}\n'.format(swpr) + \
'PE (400-1100 nm): {:.1%}\n'.format(power_enchancement)
,
fontsize=8,
)
plt.xlabel('Wavelength (nm)')
plt.ylabel('Reflection (%)')
plt.ylim([0, 8])
plt.xlim([300, 1250])
plt.legend()
plt.show()
# plt.savefig('example_out.png',dpi=200)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file pvarc-0.1.0.tar.gz
.
File metadata
- Download URL: pvarc-0.1.0.tar.gz
- Upload date:
- Size: 88.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2d723a5550edb4e1009b2f2d391f7b393db2c9635a65d03c80411956b0c7d9ca |
|
MD5 | d63368b56023d7be7edaaedd0aaab74b |
|
BLAKE2b-256 | 64ee738e7b100debbb6357121fc36ae0a03d902a0a5b1b4cf9dcb77d9e8da99f |
File details
Details for the file pvarc-0.1.0-py3-none-any.whl
.
File metadata
- Download URL: pvarc-0.1.0-py3-none-any.whl
- Upload date:
- Size: 90.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0902ca333aee90a010f1affed6e7d0eee682d2c1e041240df82773ee0e8aa416 |
|
MD5 | 9e370338cb1043a084a32d2f55888f99 |
|
BLAKE2b-256 | fd2ecda5db686a464de356ede7afb06dd0fd7b4022ff6059b734e53e46a23d1e |