Skip to main content

2D View Factor Model to calculate the irradiance incident on various surfaces of PV arrays

Project description

Logo

CircleCI License PyPI-Status PyPI-Versions

pvfactors is a tool used by PV professionals to calculate the irradiance incident on surfaces of a photovoltaic array. It relies on the use of 2D geometries and view factors integrated mathematically into systems of equations to account for reflections between all of the surfaces.

pvfactors was originally ported from the SunPower developed ‘vf_model’ package, which was introduced at the IEEE PV Specialist Conference 44 2017 (see [1] and link to paper).


Documentation

The documentation can be found here. It includes a lot of tutorials that describe the different ways of using pvfactors.

Quick Start

Given some timeseries inputs:

# Import external libraries
from datetime import datetime
import pandas as pd

# Create input data
df_inputs = pd.DataFrame(
    {'solar_zenith': [20., 50.],
     'solar_azimuth': [110., 250.],
     'surface_tilt': [10., 20.],
     'surface_azimuth': [90., 270.],
     'dni': [1000., 900.],
     'dhi': [50., 100.],
     'albedo': [0.2, 0.2]},
    index=[datetime(2017, 8, 31, 11), datetime(2017, 8, 31, 15)])
df_inputs

solar_zenith

solar_azimuth

surface_tilt

surface_azimuth

dni

dhi

albedo

2017-08-31 11:00:00

20.0

110.0

10.0

90.0

1000.0

50.0

0.2

2017-08-31 15:00:00

50.0

250.0

20.0

270.0

900.0

100.0

0.2

And some PV array parameters

pvarray_parameters = {
    'n_pvrows': 3,            # number of pv rows
    'pvrow_height': 1,        # height of pvrows (measured at center / torque tube)
    'pvrow_width': 1,         # width of pvrows
    'axis_azimuth': 0.,       # azimuth angle of rotation axis
    'gcr': 0.4,               # ground coverage ratio
}

The user can quickly create a PV array with pvfactors, and manipulate it with the engine

from pvfactors.geometry import OrderedPVArray
# Create PV array
pvarray = OrderedPVArray.init_from_dict(pvarray_parameters)
from pvfactors.engine import PVEngine
# Create engine
engine = PVEngine(pvarray)
# Fit engine to data
engine.fit(df_inputs.index, df_inputs.dni, df_inputs.dhi,
           df_inputs.solar_zenith, df_inputs.solar_azimuth,
           df_inputs.surface_tilt, df_inputs.surface_azimuth,
           df_inputs.albedo)

The user can then plot the PV array geometry at any given time of the simulation:

# Plot pvarray shapely geometries
f, ax = plt.subplots(figsize=(10, 5))
pvarray.plot_at_idx(1, ax)
plt.show()
https://raw.githubusercontent.com/SunPower/pvfactors/master/docs/sphinx/_static/pvarray.png

It is then very easy to run simulations using the defined engine:

pvarray = engine.run_full_mode(fn_build_report=lambda pvarray: pvarray)

And inspect the results thanks to the simple geometry API

print("Incident irradiance on front surface of middle pv row: {} W/m2"
      .format(pvarray.ts_pvrows[1].front.get_param_weighted('qinc')))
print("Reflected irradiance on back surface of left pv row: {} W/m2"
      .format(pvarray.ts_pvrows[0].back.get_param_weighted('reflection')))
print("Isotropic irradiance on back surface of right pv row: {} W/m2"
      .format(pvarray.ts_pvrows[2].back.get_param_weighted('isotropic')))
Incident irradiance on front surface of middle pv row: [1034.968  886.377] W/m2
Reflected irradiance on back surface of left pv row: [112.139  86.404] W/m2
Isotropic irradiance on back surface of right pv row: [0.116 1.849] W/m2

The users can also create a “report” while running the simulations that will rely on the simple API shown above, and which will look like whatever the users want.

# Create a function that will build a report
def fn_report(pvarray): return {'total_incident_back': pvarray.ts_pvrows[1].back.get_param_weighted('qinc'),
                                'total_absorbed_back': pvarray.ts_pvrows[1].back.get_param_weighted('qabs')}

# Run full mode simulation
report = engine.run_full_mode(fn_build_report=fn_report)

# Print results (report is defined by report function passed by user)
df_report = pd.DataFrame(report, index=df_inputs.index)
df_report

total_incident_back

total_absorbed_back

2017-08-31 11:00:00

106.627832

103.428997

2017-08-31 15:00:00

79.668878

77.278812

Installation

pvfactors is currently compatible and tested with 3.6+, and is available in PyPI. The easiest way to install pvfactors is to use pip as follows:

$ pip install pvfactors

The package wheel files are also available in the release section of the Github repository.

Requirements

Requirements are included in the requirements.txt file of the package. Here is a list of important dependencies:

Citing pvfactors

We appreciate your use of pvfactors. If you use pvfactors in a published work, we kindly ask that you cite:

Anoma, M., Jacob, D., Bourne, B.C., Scholl, J.A., Riley, D.M. and Hansen, C.W., 2017. View Factor Model and Validation for Bifacial PV and Diffuse Shade on Single-Axis Trackers. In 44th IEEE Photovoltaic Specialist Conference.

Contributing

Contributions are needed in order to improve pvfactors. If you wish to contribute, you can start by forking and cloning the repository, and then installing pvfactors using pip in the root folder of the package:

$ pip install .

To install the package in editable mode, you can use:

$ pip install -e .

Releasing

When releasing pvfactors, you will need to run a couple of build commands. First make sure to activate your virtual environment if any, then:

  • create a tag on the latest master branch commit using git tag -a vX.X.X, and write a tag message. You can then push that tag to Github so that it will appear there.

  • build the documentation by running make build-docs. When done running, you should be able to open build/sphinx/html/index.html, and confirm that the version displayed is the same as the one from the git tag. You can deploy by copying the content of of the build/sphinx/html/ folder into the gh-pages branch of the repo (make sure to keep the .nojekyll file that’s already present).

  • build the release files by running make build-package. When done running, you should be able to open dist/ and see both a whl file and and tar file. Make sure that their names include the correct git tag you created. Please confirm that the whl file was built correctly by installing it locally and testing the newly released updates. You can deploy by 1) making a Github release from the tag you created and pushed, and including the files in dist/ in the release. 2) The last step is to publish a release in PyPI, for which you can use twine and the command twine upload dist/*

References

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pvfactors-1.5.2.tar.gz (82.5 kB view details)

Uploaded Source

Built Distribution

pvfactors-1.5.2-py2.py3-none-any.whl (73.0 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file pvfactors-1.5.2.tar.gz.

File metadata

  • Download URL: pvfactors-1.5.2.tar.gz
  • Upload date:
  • Size: 82.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.8.12

File hashes

Hashes for pvfactors-1.5.2.tar.gz
Algorithm Hash digest
SHA256 bbca3d05a919581e2f5c58f6aaa1b9803d4816ad3b858229a44c3c13c6daa35a
MD5 b3876c905583be87af974d5a2f3c7d1e
BLAKE2b-256 5dfa48cd1ae6b9ea390978e5dd2ef0e459de0a76342ea29f45fb28b4dd32e990

See more details on using hashes here.

File details

Details for the file pvfactors-1.5.2-py2.py3-none-any.whl.

File metadata

  • Download URL: pvfactors-1.5.2-py2.py3-none-any.whl
  • Upload date:
  • Size: 73.0 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.8.12

File hashes

Hashes for pvfactors-1.5.2-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 db44c5623977dda2eb2bde30613bd0b36882b5da1737bb99206b1969758c449c
MD5 e754b85702f11c7cd99f0716c92b5fd1
BLAKE2b-256 a4f68e917b696296e32d7b1b0fddaa83d98ef323cbcba7eb83e6ba60d507ddab

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page