Porcupine wake word engine demos
Project description
Porcupine Wake Word Engine Demos
Made in Vancouver, Canada by Picovoice
This package contains demos and commandline utilities for processing real-time audio (i.e. microphone) and audio files using Porcupine wake word engine.
Porcupine
Porcupine is a highly-accurate and lightweight wake word engine. It enables building always-listening voice-enabled applications. It is
- using deep neural networks trained in real-world environments.
- compact and computationally-efficient making it perfect for IoT.
- scalable. It can detect multiple always-listening voice commands with no added CPU/memory footprint.
- self-service. Developers can train custom wake phrases using Picovoice Console.
Compatibility
- Python 3
- Runs on Linux (x86_64), Mac (x86_64), Windows (x86_64), Raspberry Pi (all variants), and BeagleBone.
Installation
Microphone demo uses PyAudio for recording input audio. Consult the installation guide at PyAudio.
sudo pip3 install pvporcupinedemo
Usage
Microphone Demo
It opens an audio stream from a microphone and detects utterances of a given wake word. The following opens the default microphone and detects occurrences of "Picovoice".
porcupine_demo_mic --keywords picovoice
keywords
is a shorthand for using default keyword files shipped with the package. The list of default keyword files
can be seen in the usage string
porcupine_demo_mic --help
To detect multiple phrases concurrently provide them as separate arguments
porcupine_demo_mic --keywords picovoice porcupine
To detect non-default keywords (e.g. models created using Picovoice Console)
use keyword_paths
argument
porcupine_demo_mic --keyword_paths ${KEYWORD_PATH_ONE} ${KEYWORD_PATH_TWO}
It is possible that the default audio input device recognized by PyAudio is not the one being used. There are a couple of debugging facilities baked into the demo application to solve this. First, type the following into the console
porcupine_demo_mic --show_audio_devices
It provides information about various audio input devices on the box. On a Linux box, this is the console output
'index': '0', 'name': 'HDA Intel PCH: ALC892 Analog (hw:0,0)', 'defaultSampleRate': '44100.0', 'maxInputChannels': '2'
'index': '1', 'name': 'HDA Intel PCH: ALC892 Alt Analog (hw:0,2)', 'defaultSampleRate': '44100.0', 'maxInputChannels': '2'
'index': '2', 'name': 'HDA NVidia: HDMI 0 (hw:1,3)', 'defaultSampleRate': '44100.0', 'maxInputChannels': '0'
'index': '3', 'name': 'HDA NVidia: HDMI 1 (hw:1,7)', 'defaultSampleRate': '44100.0', 'maxInputChannels': '0'
'index': '4', 'name': 'HDA NVidia: HDMI 2 (hw:1,8)', 'defaultSampleRate': '44100.0', 'maxInputChannels': '0'
'index': '5', 'name': 'HDA NVidia: HDMI 3 (hw:1,9)', 'defaultSampleRate': '44100.0', 'maxInputChannels': '0'
'index': '6', 'name': 'HDA NVidia: HDMI 0 (hw:2,3)', 'defaultSampleRate': '44100.0', 'maxInputChannels': '0'
'index': '7', 'name': 'HDA NVidia: HDMI 1 (hw:2,7)', 'defaultSampleRate': '44100.0', 'maxInputChannels': '0'
'index': '8', 'name': 'HDA NVidia: HDMI 2 (hw:2,8)', 'defaultSampleRate': '44100.0', 'maxInputChannels': '0'
'index': '9', 'name': 'HDA NVidia: HDMI 3 (hw:2,9)', 'defaultSampleRate': '44100.0', 'maxInputChannels': '0'
'index': '10', 'name': 'Logitech USB Headset: Audio (hw:3,0)', 'defaultSampleRate': '44100.0', 'maxInputChannels': '1'
'index': '11', 'name': 'sysdefault', 'defaultSampleRate': '48000.0', 'maxInputChannels': '128'
'index': '12', 'name': 'front', 'defaultSampleRate': '44100.0', 'maxInputChannels': '0'
'index': '13', 'name': 'surround21', 'defaultSampleRate': '44100.0', 'maxInputChannels': '0'
'index': '14', 'name': 'surround40', 'defaultSampleRate': '44100.0', 'maxInputChannels': '0'
'index': '15', 'name': 'surround41', 'defaultSampleRate': '44100.0', 'maxInputChannels': '0'
'index': '16', 'name': 'surround50', 'defaultSampleRate': '44100.0', 'maxInputChannels': '0'
'index': '17', 'name': 'surround51', 'defaultSampleRate': '44100.0', 'maxInputChannels': '0'
'index': '18', 'name': 'surround71', 'defaultSampleRate': '44100.0', 'maxInputChannels': '0'
'index': '19', 'name': 'pulse', 'defaultSampleRate': '44100.0', 'maxInputChannels': '32'
'index': '20', 'name': 'dmix', 'defaultSampleRate': '48000.0', 'maxInputChannels': '0'
'index': '21', 'name': 'default', 'defaultSampleRate': '44100.0', 'maxInputChannels': '32'
It can be seen that the last device (index 21) is considered default. But on this machine, a headset is being used as the input device which has an index of 10. After finding the correct index the demo application can be invoked as below
porcupine_demo_mic --keywords picovoice --audio_device_index 10
If the problem persists we suggest storing the recorded audio into a file for inspection. This can be achieved by
porcupine_demo_mic --keywords picovoice --audio_device_index 10 --output_path ~/test.wav
If after listening to stored file there is no apparent problem detected please open an issue.
File Demo
It allows testing Porcupine on a corpus of audio files. The demo is mainly useful for quantitative performance benchmarking. It accepts 16kHz audio files. Porcupine processes a single-channel audio stream if a stereo file is provided it only processes the first (left) channel. The following processes a file looking for instances of the phrase "Picovoice"
porcupine_demo_file --input_audio_path ${AUDIO_PATH} --keywords picovoice
keywords
is a shorthand for using default keyword files shipped with the package. The list of default keyword files
can be seen in the usage string
porcupine_demo_file --help
To detect multiple phrases concurrently provide them as separate arguments
porcupine_demo_file --input_audio_path ${AUDIO_PATH} --keywords grasshopper porcupine
To detect non-default keywords (e.g. models created using Picovoice Console)
use keyword_paths
argument
porcupine_demo_file --input_audio_path ${AUDIO_PATH} \
--keyword_paths ${KEYWORD_PATH_ONE} ${KEYWORD_PATH_TWO}
The sensitivity of the engine can be tuned per keyword using the sensitivities
input argument
porcupine_demo_file --input_audio_path ${AUDIO_PATH} \
--keywords grasshopper porcupine --sensitivities 0.3 0.6
Sensitivity is the parameter that enables trading miss rate for the false alarm rate. It is a floating point number within
[0, 1]
. A higher sensitivity reduces the miss rate at the cost of increased false alarm rate.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Hashes for pvporcupinedemo-1.9.0-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1641f6d76014f481f3eebb45579f4f130b9fddc8146f404ef4cc4b3cabf9a7aa |
|
MD5 | 8f9790974827233a8aaaadaa91e06781 |
|
BLAKE2b-256 | f5c84aea0cb7a4e1239c070487a581a71ddfe6a7fb78f908641523f4b15e3d9f |