Skip to main content

A scikit-learn-compatible implementation of Piecewise Linear Regression

Project description

pwlreg

Tests codecov

A scikit-learn-compatible implementation of Piecewise Linear Regression

Installation

pip install pwlreg

Documentation

See the documentation here.

import numpy as np
import matplotlib.pyplot as plt

import pwlreg as pw


x = np.array([1., 2., 3., 4., 5., 6., 7., 8., 9., 10.])
y = np.array([1., 1.5, 0.5, 1., 1.25, 2.75, 4, 5.25, 6., 8.5])

m = pw.AutoPiecewiseRegression(n_segments=2, degree=[0, 1])
m.fit(x, y)

xx = np.linspace(1, 10, 100)
plt.plot(x, y, "o")
plt.plot(xx, m.predict(xx), "-")
plt.show()

pwlreg toy example

m.coef_         # [ 1.00  -5.50  1.35 ]
m.breakpoints_  # [ 1.000000  4.814815  10.000000 ]

$$ x = \begin{cases} 1, & 1 \leq x < 4.815 \ -5.5 + 1.35x, & 4.815 \leq x < 10 \end{cases} $$

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pwlreg-1.0.1.tar.gz (7.8 kB view details)

Uploaded Source

Built Distribution

pwlreg-1.0.1-py3-none-any.whl (7.4 kB view details)

Uploaded Python 3

File details

Details for the file pwlreg-1.0.1.tar.gz.

File metadata

  • Download URL: pwlreg-1.0.1.tar.gz
  • Upload date:
  • Size: 7.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.7

File hashes

Hashes for pwlreg-1.0.1.tar.gz
Algorithm Hash digest
SHA256 22145c7e3d18fb4dcdd97cabaf05ebc4e6a73f68bc4db2ee229021eaa8817b35
MD5 f319817b2dd3795eb36748153853eb15
BLAKE2b-256 ddc3649b05aff3ad95ad02f6f32386bcee7f3e5c9d4e1369e86244caf4b3257d

See more details on using hashes here.

File details

Details for the file pwlreg-1.0.1-py3-none-any.whl.

File metadata

  • Download URL: pwlreg-1.0.1-py3-none-any.whl
  • Upload date:
  • Size: 7.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.7

File hashes

Hashes for pwlreg-1.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 4c35abfaf3657b2988addf4b1bf42fedf93de3446645f484df5e5fe5546c79a8
MD5 2969dad5459132d05c1a2c20790caaab
BLAKE2b-256 47971f2125890ef96e2cc02c2c11911482c384e8e4b24d8c7f00bcde5ee082b1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page