Skip to main content

discrete pairwise undirected graphical models

Project description

Copyright (c) 2020 Nico Piatkowski

pxpy

The python library for discrete pairwise undirected graphical models.

Inference: * Loopy belief propagation (GPU support) * Junction tree * Stochastic Clenshaw-Curtis quadrature

Sampling: * Gibbs Sampling * Perturb+Map Sampling

Parameter learning: * Accelerated proximal gradient * built-in L1 / L2 regularization * Supports arbitrary custom regularization

Structure learning: * Chow-Liu trees * Soft-thresolding * High-order clique structures

Misc: * Support for spatio-temporal compressible reparametrization (STRF) * Runs on x86_64 (linux, windows), ARMv8 (linux), and MSP430 (bare metal) * Basic graph drawing via graphviz * Discretization

<https://randomfields.org>

Changelog

  • 1.0a36: Improved: Randomized clique search

  • 1.0a29: Added: Randomized clique search

  • 1.0a28: Improved: Handling NaN-values during discretization (now interpreted as missing)

  • 1.0a27: Improved: Accelerated structure estimation

  • 1.0a26: Improved: Progress computation. Added: Online entropy computation for large cliques

  • 1.0a25: Improved: Memory management

  • 1.0a24: Improved: Structure estimation, backend. Added: Third-order structure estimation; simple graphviz output

  • 1.0a23: Improved: Structure estimation

  • 1.0a22: Improved: Discretization engine, support for external inference engine. Added: default to 32bit computation (disable via env PX_USE64BIT)

  • 1.0a21: Improved: Support for external inference engine

  • 1.0a20: Added: Support for external inference engine (access via env PX_EXTINF)

  • 1.0a19: Improved: Manual model creation

  • 1.0a18: Added: Debug mode (linux only, enable via env PX_DEBUGMODE)

  • 1.0a17: Improved: API, tests, regularization. Added: AIC and BIC computation

  • 1.0a16: Improved: Memory management, access to optimizer state in optimization hooks. Added: Support for training resumption

  • 1.0a15: Improved: API

  • 1.0a14: Improved: Memory management

  • 1.0a13: Improved: Memory management (fixed leak in conditional sampling/marginals)

  • 1.0a12: Improved: Access to vertex and pairwise marginals

  • 1.0a11: Added: Access to single variable marginals

  • 1.0a10: Improved: Library build process

  • 1.0a9: Added: Conditional sampling

  • 1.0a8: Imroved: Maximum-a-posteriori (MAP) estimation. Added: Custom graph construction

  • 1.0a7: Added: Conditional marginal inference, support for Ising/minimal statistics

  • 1.0a6: Added: Manual model creation, support for training data with missing values (represented by pxpy.MISSING_VALUE)

  • 1.0a5: Improved: Model management

  • 1.0a4: Added: Model access in regularization and proximal hooks

  • 1.0a3: Improved: GLIBC requirement, removed libgomp dependency

  • 1.0a2: Added: Python 3.5 compatibility

  • 1.0a1: Initial release

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pxpy-1.0a36.tar.gz (12.2 MB view details)

Uploaded Source

Built Distribution

pxpy-1.0a36-py3-none-any.whl (12.3 MB view details)

Uploaded Python 3

File details

Details for the file pxpy-1.0a36.tar.gz.

File metadata

  • Download URL: pxpy-1.0a36.tar.gz
  • Upload date:
  • Size: 12.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.1.0 requests-toolbelt/0.9.1 tqdm/4.40.0 CPython/3.8.3

File hashes

Hashes for pxpy-1.0a36.tar.gz
Algorithm Hash digest
SHA256 563831c8b687af41890579b72f147098c5e5dd58381f0a9e2516d5ae0bb00f77
MD5 1607d3e6493a60808e32ee9f7903014e
BLAKE2b-256 0d068e7dffd9e7f1418232af6875e810be63129e2c02405d32f991c011d96e05

See more details on using hashes here.

File details

Details for the file pxpy-1.0a36-py3-none-any.whl.

File metadata

  • Download URL: pxpy-1.0a36-py3-none-any.whl
  • Upload date:
  • Size: 12.3 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.1.0 requests-toolbelt/0.9.1 tqdm/4.40.0 CPython/3.8.3

File hashes

Hashes for pxpy-1.0a36-py3-none-any.whl
Algorithm Hash digest
SHA256 15d5bd6f8fe40cebe435273017f511691896c4fc32da9f63e4229ad70f34506d
MD5 dbe665df3292501941b570976be10121
BLAKE2b-256 9a5f2fc2afad20fd1126baab1295f30ead5beaf79f8487f46c2ecfa57fe6a09d

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page