Skip to main content

discrete pairwise undirected graphical models

Project description

Copyright (c) 2020 Nico Piatkowski

pxpy

The python library for discrete pairwise undirected graphical models.

Inference: * Loopy belief propagation (GPU support) * Junction tree * Stochastic Clenshaw-Curtis quadrature

Sampling: * Gibbs Sampling * Perturb+Map Sampling

Parameter learning: * Accelerated proximal gradient * built-in L1 / L2 regularization * Supports arbitrary custom regularization

Structure learning: * Chow-Liu trees * Soft-thresolding * High-order clique structures

Misc: * Support for spatio-temporal compressible reparametrization (STRF) * Runs on x86_64 (linux, windows), ARMv8 (linux), and MSP430 (bare metal) * Basic graph drawing via graphviz * Discretization

<https://randomfields.org>

Changelog

  • 1.0a36: Improved: Randomized clique search

  • 1.0a29: Added: Randomized clique search

  • 1.0a28: Improved: Handling NaN-values during discretization (now interpreted as missing)

  • 1.0a27: Improved: Accelerated structure estimation

  • 1.0a26: Improved: Progress computation. Added: Online entropy computation for large cliques

  • 1.0a25: Improved: Memory management

  • 1.0a24: Improved: Structure estimation, backend. Added: Third-order structure estimation; simple graphviz output

  • 1.0a23: Improved: Structure estimation

  • 1.0a22: Improved: Discretization engine, support for external inference engine. Added: default to 32bit computation (disable via env PX_USE64BIT)

  • 1.0a21: Improved: Support for external inference engine

  • 1.0a20: Added: Support for external inference engine (access via env PX_EXTINF)

  • 1.0a19: Improved: Manual model creation

  • 1.0a18: Added: Debug mode (linux only, enable via env PX_DEBUGMODE)

  • 1.0a17: Improved: API, tests, regularization. Added: AIC and BIC computation

  • 1.0a16: Improved: Memory management, access to optimizer state in optimization hooks. Added: Support for training resumption

  • 1.0a15: Improved: API

  • 1.0a14: Improved: Memory management

  • 1.0a13: Improved: Memory management (fixed leak in conditional sampling/marginals)

  • 1.0a12: Improved: Access to vertex and pairwise marginals

  • 1.0a11: Added: Access to single variable marginals

  • 1.0a10: Improved: Library build process

  • 1.0a9: Added: Conditional sampling

  • 1.0a8: Imroved: Maximum-a-posteriori (MAP) estimation. Added: Custom graph construction

  • 1.0a7: Added: Conditional marginal inference, support for Ising/minimal statistics

  • 1.0a6: Added: Manual model creation, support for training data with missing values (represented by pxpy.MISSING_VALUE)

  • 1.0a5: Improved: Model management

  • 1.0a4: Added: Model access in regularization and proximal hooks

  • 1.0a3: Improved: GLIBC requirement, removed libgomp dependency

  • 1.0a2: Added: Python 3.5 compatibility

  • 1.0a1: Initial release

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pxpy-1.0a37.tar.gz (12.2 MB view details)

Uploaded Source

Built Distribution

pxpy-1.0a37-py3-none-any.whl (12.3 MB view details)

Uploaded Python 3

File details

Details for the file pxpy-1.0a37.tar.gz.

File metadata

  • Download URL: pxpy-1.0a37.tar.gz
  • Upload date:
  • Size: 12.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.1.0 requests-toolbelt/0.9.1 tqdm/4.40.0 CPython/3.8.3

File hashes

Hashes for pxpy-1.0a37.tar.gz
Algorithm Hash digest
SHA256 5ba733aadf213efa3c7a54561ef0ae6f0e5f11dd5a6a3bb94e3a2676b7eaea38
MD5 55d98c6ad9703f2373a7b5c6c16fc2bb
BLAKE2b-256 0ddb5d975240c9ea02219a64b68d504f5e41bbfc3ef5e7891214bbd5d97b6d5f

See more details on using hashes here.

File details

Details for the file pxpy-1.0a37-py3-none-any.whl.

File metadata

  • Download URL: pxpy-1.0a37-py3-none-any.whl
  • Upload date:
  • Size: 12.3 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.1.0 requests-toolbelt/0.9.1 tqdm/4.40.0 CPython/3.8.3

File hashes

Hashes for pxpy-1.0a37-py3-none-any.whl
Algorithm Hash digest
SHA256 8a6f9aa8228a5bd375f2a11a8b4df2850af0a7725497d9f3010e52bb3459fd6b
MD5 2b92db0ff481357c20cb658741c2d930
BLAKE2b-256 bc4a529372e15b2b1c2d5c5a773dab6f3d0d28ebc3686c770d2adf45aa544242

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page