Skip to main content

discrete pairwise undirected graphical models

Project description

Copyright (c) 2020 Nico Piatkowski

pxpy

The python library for discrete pairwise undirected graphical models.

Inference: * Loopy belief propagation (GPU support) * Junction tree * Stochastic Clenshaw-Curtis quadrature

Sampling: * Gibbs Sampling * Perturb+Map Sampling

Parameter learning: * Accelerated proximal gradient * built-in L1 / L2 regularization * Supports arbitrary custom regularization

Structure learning: * Chow-Liu trees * Soft-thresolding * High-order clique structures

Misc: * Support for spatio-temporal compressible reparametrization (STRF) * Runs on x86_64 (linux, windows), ARMv8 (linux), and MSP430 (bare metal) * Basic graph drawing via graphviz * Discretization

<https://randomfields.org>

Changelog

  • 1.0a36: Improved: Randomized clique search

  • 1.0a29: Added: Randomized clique search

  • 1.0a28: Improved: Handling NaN-values during discretization (now interpreted as missing)

  • 1.0a27: Improved: Accelerated structure estimation

  • 1.0a26: Improved: Progress computation. Added: Online entropy computation for large cliques

  • 1.0a25: Improved: Memory management

  • 1.0a24: Improved: Structure estimation, backend. Added: Third-order structure estimation; simple graphviz output

  • 1.0a23: Improved: Structure estimation

  • 1.0a22: Improved: Discretization engine, support for external inference engine. Added: default to 32bit computation (disable via env PX_USE64BIT)

  • 1.0a21: Improved: Support for external inference engine

  • 1.0a20: Added: Support for external inference engine (access via env PX_EXTINF)

  • 1.0a19: Improved: Manual model creation

  • 1.0a18: Added: Debug mode (linux only, enable via env PX_DEBUGMODE)

  • 1.0a17: Improved: API, tests, regularization. Added: AIC and BIC computation

  • 1.0a16: Improved: Memory management, access to optimizer state in optimization hooks. Added: Support for training resumption

  • 1.0a15: Improved: API

  • 1.0a14: Improved: Memory management

  • 1.0a13: Improved: Memory management (fixed leak in conditional sampling/marginals)

  • 1.0a12: Improved: Access to vertex and pairwise marginals

  • 1.0a11: Added: Access to single variable marginals

  • 1.0a10: Improved: Library build process

  • 1.0a9: Added: Conditional sampling

  • 1.0a8: Imroved: Maximum-a-posteriori (MAP) estimation. Added: Custom graph construction

  • 1.0a7: Added: Conditional marginal inference, support for Ising/minimal statistics

  • 1.0a6: Added: Manual model creation, support for training data with missing values (represented by pxpy.MISSING_VALUE)

  • 1.0a5: Improved: Model management

  • 1.0a4: Added: Model access in regularization and proximal hooks

  • 1.0a3: Improved: GLIBC requirement, removed libgomp dependency

  • 1.0a2: Added: Python 3.5 compatibility

  • 1.0a1: Initial release

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pxpy-1.0a38.tar.gz (12.2 MB view details)

Uploaded Source

Built Distribution

pxpy-1.0a38-py3-none-any.whl (12.3 MB view details)

Uploaded Python 3

File details

Details for the file pxpy-1.0a38.tar.gz.

File metadata

  • Download URL: pxpy-1.0a38.tar.gz
  • Upload date:
  • Size: 12.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.1.0 requests-toolbelt/0.9.1 tqdm/4.40.0 CPython/3.8.3

File hashes

Hashes for pxpy-1.0a38.tar.gz
Algorithm Hash digest
SHA256 530a2c4427678664741da058dc7c666a23a36256103539c1f9b2a46aeb5370c1
MD5 1e8218f931e627a28d56a3c1ec938e1c
BLAKE2b-256 7dbd8d8196839a193fa848692042f6d34891207a33d38ee69734327aa4b77d29

See more details on using hashes here.

File details

Details for the file pxpy-1.0a38-py3-none-any.whl.

File metadata

  • Download URL: pxpy-1.0a38-py3-none-any.whl
  • Upload date:
  • Size: 12.3 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.1.0 requests-toolbelt/0.9.1 tqdm/4.40.0 CPython/3.8.3

File hashes

Hashes for pxpy-1.0a38-py3-none-any.whl
Algorithm Hash digest
SHA256 8c5ba64912a315c0bd9a4eb13170697ac3ba9981020a13e124d13b45e6a5297b
MD5 c42a1c02bcb95ed9ee469b197dde14f3
BLAKE2b-256 197340ca5830745c76ad39e65a39070b05ef60147c2e1f314bf7d9a0c3518d4d

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page