Skip to main content

discrete pairwise undirected graphical models

Project description

Copyright (c) 2020 Nico Piatkowski

pxpy

The python library for discrete pairwise undirected graphical models. Runs on Linux with GLIBC >= 2.28 and Windows 10.

Inference

  • Loopy belief propagation

  • Junction tree

  • Stochastic Clenshaw-Curtis quadrature

Sampling

  • Gibbs Sampling

  • Perturb+Map Sampling

Parameter learning

  • Accelerated proximal gradient

  • built-in L1 / L2 regularization

  • Support for custom regularization

Structure learning

  • Chow-Liu trees

  • Soft-thresolding

  • High-order clique structures

Misc

  • Support for deep Boltzmann tree models (DBT)

  • Support for spatio-temporal compressible reparametrization (STRF)

  • Runs on x86_64 (linux, windows) and aarch64 (linux)

  • Graph drawing via graphviz

  • Discretization

<https://randomfields.org>

Alpha Changelog

  • 1.0a63: Added: Experimental annealed rejection sampler for structure sampling

  • 1.0a62: Improved: Model loading

  • 1.0a61: Improved: Setting target for “star” structure; reduced python version to 3.6

  • 1.0a60: Improved: Numerical stability of discretization

  • 1.0a55: Added: Load/store of discretization models; aarch64 support (tested on Jetson TX1)

  • 1.0a54: Improved: Init speed

  • 1.0a53: Improved: Init speed

  • 1.0a52: Improved: Graph splitting; init speed

  • 1.0a51: Fixed: Multi-core normalization; Split-edge weight centering

  • 1.0a50: Improved: Support for external inference engines; Changed required GLIBC version to 2.29

  • 1.0a49: Fixed: External loader

  • 1.0a48: Added: Shell script “pxpy_environ” for populating various environment variables. Improved: multi-core support.

  • 1.0a47: Added: draw_neighbors(..). Improved: Discretization

  • 1.0a44: Improved: Discretization

  • 1.0a42: Improved: Updated some default values

  • 1.0a41: Improved: Fixed subtle bug in parameter initialization

  • 1.0a40: Added: Loading string data via genfromstrcsv(..) (built-in string<->int mapper)

  • 1.0a36: Improved: Randomized clique search

  • 1.0a29: Added: Randomized clique search

  • 1.0a28: Improved: Handling NaN-values during discretization (now interpreted as missing)

  • 1.0a27: Improved: Accelerated structure estimation

  • 1.0a26: Improved: Progress computation. Added: Online entropy computation for large cliques

  • 1.0a25: Improved: Memory management

  • 1.0a24: Improved: Structure estimation, backend. Added: Third-order structure estimation; simple graphviz output

  • 1.0a23: Improved: Structure estimation

  • 1.0a22: Improved: Discretization engine, support for external inference engine. Added: default to 32bit computation (disable via env PX_USE64BIT)

  • 1.0a21: Improved: Support for external inference engine

  • 1.0a20: Added: Support for external inference engine (access via env PX_EXTINF)

  • 1.0a19: Improved: Manual model creation

  • 1.0a18: Added: Debug mode (linux only, enable via env PX_DEBUGMODE)

  • 1.0a17: Improved: API, tests, regularization. Added: AIC and BIC computation

  • 1.0a16: Improved: Memory management, access to optimizer state in optimization hooks. Added: Support for training resumption

  • 1.0a15: Improved: API

  • 1.0a14: Improved: Memory management

  • 1.0a13: Improved: Memory management (fixed leak in conditional sampling/marginals)

  • 1.0a12: Improved: Access to vertex and pairwise marginals

  • 1.0a11: Added: Access to single variable marginals

  • 1.0a10: Improved: Library build process

  • 1.0a9: Added: Conditional sampling

  • 1.0a8: Imroved: Maximum-a-posteriori (MAP) estimation. Added: Custom graph construction

  • 1.0a7: Added: Conditional marginal inference, support for Ising/minimal statistics

  • 1.0a6: Added: Manual model creation, support for training data with missing values (represented by pxpy.MISSING_VALUE)

  • 1.0a5: Improved: Model management

  • 1.0a4: Added: Model access in regularization and proximal hooks

  • 1.0a3: Improved: GLIBC requirement, removed libgomp dependency

  • 1.0a2: Added: Python 3.5 compatibility

  • 1.0a1: Initial release

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pxpy-1.0a63.tar.gz (21.3 MB view details)

Uploaded Source

Built Distribution

pxpy-1.0a63-py3-none-any.whl (21.5 MB view details)

Uploaded Python 3

File details

Details for the file pxpy-1.0a63.tar.gz.

File metadata

  • Download URL: pxpy-1.0a63.tar.gz
  • Upload date:
  • Size: 21.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.2 requests-toolbelt/0.9.1 tqdm/4.54.0 CPython/3.9.1

File hashes

Hashes for pxpy-1.0a63.tar.gz
Algorithm Hash digest
SHA256 3b09ffeaff1c809ae95b367084631dc51750ab5676e8e9fa96297657b17e72f9
MD5 5f8be05f8121bda7605d6b2c025a9f95
BLAKE2b-256 6330260b34f2c6a142d48a4b2ce662dca527cabbefe5e089757ba7c30b29c83d

See more details on using hashes here.

File details

Details for the file pxpy-1.0a63-py3-none-any.whl.

File metadata

  • Download URL: pxpy-1.0a63-py3-none-any.whl
  • Upload date:
  • Size: 21.5 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.2 requests-toolbelt/0.9.1 tqdm/4.54.0 CPython/3.9.1

File hashes

Hashes for pxpy-1.0a63-py3-none-any.whl
Algorithm Hash digest
SHA256 0145c9242d83411bf62947b7d1f1217d97dce0320f668d1ffba7f86efa027017
MD5 954e5a6dc74afe86ceed4a632126c8b7
BLAKE2b-256 9b948695d3f89ed8ad53d3c8415eb602f0113661c1a85dd1c75ebae392bde2cb

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page