Skip to main content

discrete pairwise undirected graphical models

Project description

Copyright (c) 2020 Nico Piatkowski

pxpy

The python library for discrete pairwise undirected graphical models. Runs on Linux with GLIBC >= 2.28 and Windows 10.

Inference

  • Loopy belief propagation

  • Junction tree

  • Stochastic Clenshaw-Curtis quadrature

Sampling

  • Gibbs Sampling

  • Perturb+Map Sampling

Parameter learning

  • Accelerated proximal gradient

  • built-in L1 / L2 regularization

  • Support for custom regularization

Structure learning

  • Chow-Liu trees

  • Soft-thresolding

  • High-order clique structures

Misc

  • Support for deep Boltzmann tree models (DBT)

  • Support for spatio-temporal compressible reparametrization (STRF)

  • Runs on x86_64 (linux, windows) and aarch64 (linux)

  • Graph drawing via graphviz

  • Discretization

<https://randomfields.org>

Alpha Changelog

  • 1.0a64: Improved: GPU code. Added: ONNX export

  • 1.0a63: Added: Experimental annealed rejection sampler for structure sampling

  • 1.0a62: Improved: Model loading

  • 1.0a61: Improved: Setting target for “star” structure; reduced python version to 3.6

  • 1.0a60: Improved: Numerical stability of discretization

  • 1.0a55: Added: Load/store of discretization models; aarch64 support (tested on Jetson TX1)

  • 1.0a54: Improved: Init speed

  • 1.0a53: Improved: Init speed

  • 1.0a52: Improved: Graph splitting; init speed

  • 1.0a51: Fixed: Multi-core normalization; Split-edge weight centering

  • 1.0a50: Improved: Support for external inference engines; Changed required GLIBC version to 2.29

  • 1.0a49: Fixed: External loader

  • 1.0a48: Added: Shell script “pxpy_environ” for populating various environment variables. Improved: multi-core support.

  • 1.0a47: Added: draw_neighbors(..). Improved: Discretization

  • 1.0a44: Improved: Discretization

  • 1.0a42: Improved: Updated some default values

  • 1.0a41: Improved: Fixed subtle bug in parameter initialization

  • 1.0a40: Added: Loading string data via genfromstrcsv(..) (built-in string<->int mapper)

  • 1.0a36: Improved: Randomized clique search

  • 1.0a29: Added: Randomized clique search

  • 1.0a28: Improved: Handling NaN-values during discretization (now interpreted as missing)

  • 1.0a27: Improved: Accelerated structure estimation

  • 1.0a26: Improved: Progress computation. Added: Online entropy computation for large cliques

  • 1.0a25: Improved: Memory management

  • 1.0a24: Improved: Structure estimation, backend. Added: Third-order structure estimation; simple graphviz output

  • 1.0a23: Improved: Structure estimation

  • 1.0a22: Improved: Discretization engine, support for external inference engine. Added: default to 32bit computation (disable via env PX_USE64BIT)

  • 1.0a21: Improved: Support for external inference engine

  • 1.0a20: Added: Support for external inference engine (access via env PX_EXTINF)

  • 1.0a19: Improved: Manual model creation

  • 1.0a18: Added: Debug mode (linux only, enable via env PX_DEBUGMODE)

  • 1.0a17: Improved: API, tests, regularization. Added: AIC and BIC computation

  • 1.0a16: Improved: Memory management, access to optimizer state in optimization hooks. Added: Support for training resumption

  • 1.0a15: Improved: API

  • 1.0a14: Improved: Memory management

  • 1.0a13: Improved: Memory management (fixed leak in conditional sampling/marginals)

  • 1.0a12: Improved: Access to vertex and pairwise marginals

  • 1.0a11: Added: Access to single variable marginals

  • 1.0a10: Improved: Library build process

  • 1.0a9: Added: Conditional sampling

  • 1.0a8: Imroved: Maximum-a-posteriori (MAP) estimation. Added: Custom graph construction

  • 1.0a7: Added: Conditional marginal inference, support for Ising/minimal statistics

  • 1.0a6: Added: Manual model creation, support for training data with missing values (represented by pxpy.MISSING_VALUE)

  • 1.0a5: Improved: Model management

  • 1.0a4: Added: Model access in regularization and proximal hooks

  • 1.0a3: Improved: GLIBC requirement, removed libgomp dependency

  • 1.0a2: Added: Python 3.5 compatibility

  • 1.0a1: Initial release

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pxpy-1.0a64.tar.gz (21.3 MB view details)

Uploaded Source

Built Distribution

pxpy-1.0a64-py3-none-any.whl (21.5 MB view details)

Uploaded Python 3

File details

Details for the file pxpy-1.0a64.tar.gz.

File metadata

  • Download URL: pxpy-1.0a64.tar.gz
  • Upload date:
  • Size: 21.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.3.0 requests-toolbelt/0.9.1 tqdm/4.54.0 CPython/3.9.1

File hashes

Hashes for pxpy-1.0a64.tar.gz
Algorithm Hash digest
SHA256 891d53a83da41c41938d45ef6bb0b0d531bb9a26a72982a1ffab1a5752b7396c
MD5 6862749ddf7c4d1efb3ffa5f01dcbc38
BLAKE2b-256 855dc14ff919765bff0cfbdc3a2ee2eeec02c831d4b206c3aa42351f50d02249

See more details on using hashes here.

File details

Details for the file pxpy-1.0a64-py3-none-any.whl.

File metadata

  • Download URL: pxpy-1.0a64-py3-none-any.whl
  • Upload date:
  • Size: 21.5 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.3.0 requests-toolbelt/0.9.1 tqdm/4.54.0 CPython/3.9.1

File hashes

Hashes for pxpy-1.0a64-py3-none-any.whl
Algorithm Hash digest
SHA256 57834e252fdcd01032e647530eee1ba6079c965a8dfb22ed005d71af8853724e
MD5 a822cc09c4ef2459d32a74b6a4d03596
BLAKE2b-256 547728a69cc856ef1b5c741185743ac47e3b40b3a5464f072f9814c55d08abef

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page