A python library for manipulating sequential and-inverter gates.

## Project description

<figure> <figcaption> pyAiger: A python library for manipulating sequential and combinatorial circuits. </figcaption> </figure>

1. Q: How is Py-Aiger pronounced? A: Like "pie" + "grrr".
2. Q: Why python? Aren't you worried about performance?! A: No. The goals of this library are ease of use and hackability.
3. Q: No, I'm really concerned about performance! A: This library is not suited to implement logic solvers. For everything else, such as the creation and manipulation of circuits with many thousands of gates in between solver calls, the library is really fast enough.
4. Q: Where does the name come from? A: Aiger is a popular circuit format. The format is used in hardware model checking, synthesis, and is supported by ABC. The name is a combination of AIG (standing for And-Inverter-Graph) and the austrian mountain Eiger.

# Installation

`\$ pip install py-aiger`

or as a developer:

`\$ python setup.py develop`

# Boolean Expression DSL

While powerful, when writing combinatorial circuits, the Sequential Circuit DSL can be somewhat clumsy. For this common usecase, we have developed the Boolean Expression DSL. All circuits generated this way have a single output.

```import aiger
x, y, z = aiger.atom('x'), aiger.atom('y'), aiger.atom('z')
expr1 = x & y  # circuit with inputs 'x', 'y' and 1 output computing x AND y.
expr2 = x | y  # logical or.
expr3 = x ^ y  # logical xor.
expr4 = x == y  # logical ==, xnor.
expr5 = x.implies(y)
expr6 = ~x  # logical negation.
expr7 = aiger.ite(x, y, z)  # if x then y else z.

# Atoms can be constants.
expr8 = x & aiger.atom(True)  # Equivilent to just x.
expr9 = x & aiger.atom(False)  # Equivilent to const False.

# And you can inspect the AIG if needed.
circ = x.aig

# And of course, you can get a BoolExpr from a single output aig.
expr10 = aiger.BoolExpr(circ)
```

# Sequential Circuit DSL

```import aiger
from aiger import utils

# Parser for ascii AIGER format.
```

## Sequential composition

```aig3 = aig1 >> aig2
```

## Parallel composition

```aig4 = aig1 | aig2
```

## Circuits with Latches/Feedback/Delay

```# Connect output y to input x with delay, initialized to True.
# (Default initialization is False.)
aig5 = aig1.feedback(
inputs=['x'],
outputs=['y'],
initials=[True],
keep_outputs=True
)
```

## Relabeling

```# Relabel input 'x' to 'z'.
aig1['i', {'x': 'z'}]

# Relabel output 'y' to 'w'.
aig1['o', {'y': 'w'}]

# Relabel latches 'l1' to 'l2'.
aig1['l', {'l1': 'l2'}]
```

## Evaluation

```# Combinatoric evaluation.
aig3(inputs={'x':True, 'y':False})

# Sequential evaluation.
sim = aig3.simulate({'x': 0, 'y': 0},
{'x': 1, 'y': 2},
{'x': 3, 'y': 4})

# Simulation Coroutine
sim = aig3.simulator()  # Coroutine
next(sim)  # Initialize
print(sim.send({'x': 0, 'y': 0}))
print(sim.send({'x': 1, 'y': 2}))
print(sim.send({'x': 3, 'y': 4}))

# Unroll
aig4 = aig3.unroll(steps=10, init=True)
```

## Useful circuits

```# Fix input x to be False.
aig4 = aiger.source({'x': False}) >> aig3

# Remove output y.
aig4 = aig3 >> aiger.sink(['y'])

# Create duplicate w of output y.
aig4 = aig3 >> aiger.tee({'y': ['y', 'w']})

# Make an AND gate.
aiger.and_gate(['x', 'y'], out='name')

# Make an OR gate.
aiger.or_gate(['x', 'y'])  # Default output name is #or_output.

# And outputs.
aig1 >> aiger.and_gate(aig1.outputs) # Default output name is #and_output.

# Or outputs.
aig1 >> aiger.or_gate(inputs=aig1.outputs, output='my_output')

# Flip outputs.
aig1 >> aiger.bit_flipper(inputs=aig1.outputs)

# Flip inputs.
aiger.bit_flipper(inputs=aig1.inputs) >> aig1

# ITE circuit
# ['o1', 'o2'] = ['i1', 'i2'] if 'test' Else ['i3', 'i4']
aiger.common.ite('test', ['i1', 'i2'], ['i3', 'i4'], outputs=['o1', 'o2'])
```

# Extra

```eval_order(aig1)  # Returns topological ordering of circuit gates.
```

# Ecosystem

<figure> <figcaption>Overview of the pyaiger ecosystem/stack.</figcaption> </figure>

Stay tuned!

### Underdevelopment

• py-aiger-bv: Extension of pyAiger for manipulating sequential bitvector circuits.
• py-aiger-bdd: Aiger <-> BDD bridge.
• py-aiger-past-ltl: Converts Past Linear Temporal Logic to aiger circuits.
• py-aiger-gridworld: Create aiger circuits representing gridworlds.
• py-aiger-spectral: A tool for performing (Fourier) Analysis of Boolean Functions.
• py-aigar: pyAiger-Analysis: Batteries included tools for analyzing aiger circuits.

# Related Projects

• pyAig: Another python library for working with AIGER circuits.

# Citing

``````@misc{pyAiger,
author       = {Marcell Vazquez-Chanlatte},
title        = {mvcisback/py-aiger},
month        = aug,
year         = 2018,
doi          = {10.5281/zenodo.1326224},
url          = {https://doi.org/10.5281/zenodo.1326224}
}
``````

## Project details 3.9.2 3.9.1 3.9.0 3.8.0 3.6.0 3.5.0 3.4.1 3.4.0 3.3.6 3.3.5 3.3.4 3.3.3 3.3.2

This version 3.3.1 3.3.0 3.2.0 3.1.0 3.0.2 3.0.1 3.0.0 2.1.1 2.1.0 2.0.2 2.0.1 2.0.0 1.0.0 1.0.0a0 pre-release 0.5.0 0.4.1