Regression Models for Count Outcomes
Project description
Introduction
The package py_countreg is a collection of functions to estimate various regression models for count outcomes.
It is an ongoing project. More functionalities will come later.
Core Functions
Count Outcome Regressions
|
|-- Equi-Dispersion (Baseline)
| |
| `-- stdpoisson() : Standard Poisson
|
|-- Over-Dispersion
| |
| |-- negbinom2() : Negative Binomial (NB-2)
| |
| |-- hdlnegbin2() : Hurdle Negative Binomial (NB-2)
| |
| |-- zifnegbin2() : Zero-Inflated Negative Binomial (NB-2)
| |
| `-- zifpoisson() : Zero-Inflated Poisson
|
`-- Over- and Under-Dispersions
|
|-- hdlpoisson() : Hurdle Poisson
|
|-- genpoisson() : Generalized Poisson
|
`-- compoisson() : Conway-Maxwell Poisson
Reference
WenSui Liu and Jimmy Cela (2008), Count Data Models in SAS, Proceedings SAS Global Forum 2008, paper 371-2008.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
py_countreg-0.0.1.tar.gz
(1.7 kB
view details)
Built Distribution
File details
Details for the file py_countreg-0.0.1.tar.gz
.
File metadata
- Download URL: py_countreg-0.0.1.tar.gz
- Upload date:
- Size: 1.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/44.0.0 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b7d4d56c269029c0819ccf86ef19f96f14cfb0af87dfe5d6c4bd5478fa2e444b |
|
MD5 | f150a4dae690b69b9ddb3912efacf933 |
|
BLAKE2b-256 | f4fa0aa536cf6d1c1eb42233e200c1cf61adbcdd4df71f11a712796e479eb052 |
File details
Details for the file py_countreg-0.0.1-py3-none-any.whl
.
File metadata
- Download URL: py_countreg-0.0.1-py3-none-any.whl
- Upload date:
- Size: 1.6 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/44.0.0 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d2e5a29d79a274adf5ed4f66651c50f6d3a162c7b1cb567fa98ea449a6b3606e |
|
MD5 | a02686e2374843024a501069b6665c02 |
|
BLAKE2b-256 | d5a2727d1fc6bc767f508451855ef58923c56815a42e901257d1f1e017322dcd |