Skip to main content

Fuzzy cognitive maps python library

Project description

PyFCM

Fuzzy cognitive maps python library. Also, supports the topology generation from data to solve classification problems. The details associated to the generation process are described in this paper.

Installation

From source:

  1. Clone repository:
    $ git clone https://github.com/J41R0/PyFCM.git 
    $ cd PyFCM
    
  2. Install setup tools and package:
    $ pip install setuptools
    $ python setup.py install
    

From PyPi:

  1. Install package using pip:
    $ pip install py-fcm
    

Example usage

Inference:

from py_fcm import from_json

fcm_json = """{
            "max_iter": 500,
            "decision_function": "LAST",
            "activation_function": "sigmoid",
            "memory_influence": False,
            "stability_diff": 0.001,
            "stop_at_stabilize": True,
            "extra_steps": 5,
            "weight": 1,
            "concepts":
                [
                    {
                        "id": "concept_1",
                        "is_active": True,
                        "type": "SIMPLE",
                        "activation": 0.5
                    },
                    {
                        "id": "concept_2", "is_active": True,
                        "type": "DECISION", "activation": 0.0,
                        "custom_function": "gceq",
                        "custom_function_args": {"weight": 0.3}
                    },
                    {
                        "id": "concept_3",
                        "is_active": True,
                        "type": "SIMPLE",
                        "activation": 0.0,
                        "use_memory": True
                    },
                    {
                        "id": "concept_4",
                        "is_active": True,
                        "type": "SIMPLE",
                        "activation": 0.3,
                        "custom_function": "saturation"
                    }
                ],
            "relations":
                [
                    {"origin": "concept_4", "destiny": "concept_2", "weight": -0.1},
                    {"origin": "concept_1", "destiny": "concept_3", "weight": 0.59},
                    {"origin": "concept_3", "destiny": "concept_2", "weight": 0.8911}
                ],
            'activation_function_args': {'lambda_val': 1},
        """
my_fcm = from_json(fcm_json)
my_fcm.run_inference()
result = my_fcm.get_final_state(concept_type='any')
print(result)

Generation:

import pandas
from py_fcm import FcmEstimator

data_dict = {
   'F1': ['x', 'x', 'y', 'y'],
   'F2': [9.8, 7.3, 1.1, 3.6],
   'class': ['a', 'a', 'r', 'r']
}

 train = pandas.DataFrame(data_dict)
 x_train = train.loc[:, train.columns != 'class']
 y_train = train.loc[:, 'class']

 estimator = FcmEstimator()
 estimator.fit(x_train, y_train)
 print(estimator.predict(x_train))
 print("Accuracy: ",estimator.score(x_train, y_train))
 print(estimator.get_fcm().to_json())

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

py_fcm-1.0.0.tar.gz (48.8 kB view details)

Uploaded Source

Built Distribution

py_fcm-1.0.0-py3-none-any.whl (54.8 kB view details)

Uploaded Python 3

File details

Details for the file py_fcm-1.0.0.tar.gz.

File metadata

  • Download URL: py_fcm-1.0.0.tar.gz
  • Upload date:
  • Size: 48.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.3

File hashes

Hashes for py_fcm-1.0.0.tar.gz
Algorithm Hash digest
SHA256 568cac736c482ab0808b3f61684ad78f233bf550e16a048fb8b007d668a34501
MD5 81caf6ae6c95eb048e75e2ea66d996d8
BLAKE2b-256 dbc1d3c469f019c65cbccbebf37c5a955324a9e8a4d4f748a7e6e65980f2988a

See more details on using hashes here.

File details

Details for the file py_fcm-1.0.0-py3-none-any.whl.

File metadata

  • Download URL: py_fcm-1.0.0-py3-none-any.whl
  • Upload date:
  • Size: 54.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.3

File hashes

Hashes for py_fcm-1.0.0-py3-none-any.whl
Algorithm Hash digest
SHA256 d4d1db17c2e3b88034ca7d949dff6bcf75e8d1e0c17cb7beb4a87885394127c1
MD5 9f6b697075324fee7cf28b4fd986c392
BLAKE2b-256 0ee4f7d0f530eda7e7d0fdaec19f5f83a32922d3d689a4303868e69889a7be3b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page