Skip to main content

Fuzzy cognitive maps python library

Project description

py-fcm

Fuzzy cognitive maps python library

###Example usage

from py_fcm import from_json

fcm_json = """{
         "max_iter": 500,
            "decision_function": "LAST",
            "activation_function": "sigmoid",
            "memory_influence": False,
            "stability_diff": 0.001,
            "stop_at_stabilize": True,
            "extra_steps": 5,
            "weight": 1,
            "concepts":
                [
                    {
                        "id": "concept_1",
                        "is_active": True,
                        "type": "SIMPLE",
                        "activation": 0.5
                    },
                    {
                        "id": "concept_2", "is_active": True,
                        "type": "DECISION", "activation": 0.0,
                        "custom_function": "sum_w",
                        "custom_function_args": {"weight": 0.3}
                    },
                    {
                        "id": "concept_3",
                        "is_active": True,
                        "type": "SIMPLE",
                        "activation": 0.0,
                        "use_memory": True
                    },
                    {
                        "id": "concept_4",
                        "is_active": True,
                        "type": "SIMPLE",
                        "activation": 0.3,
                        "custom_function": "saturation"
                    }
                ],
            "relations":
                [
                    {"origin": "concept_4", "destiny": "concept_2", "weight": -0.1},
                    {"origin": "concept_1", "destiny": "concept_3", "weight": 0.59},
                    {"origin": "concept_3", "destiny": "concept_2", "weight": 0.8911}
                ],
            'activation_function_args': {'lambda_val': 1},
        """
my_fcm = from_json(fcm_json)
my_fcm.run_inference()
result = my_fcm.get_result_by_type(node_type='any')
print(result)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

py_fcm-0.2.5.tar.gz (30.5 kB view details)

Uploaded Source

Built Distribution

py_fcm-0.2.5-py3-none-any.whl (33.4 kB view details)

Uploaded Python 3

File details

Details for the file py_fcm-0.2.5.tar.gz.

File metadata

  • Download URL: py_fcm-0.2.5.tar.gz
  • Upload date:
  • Size: 30.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.3

File hashes

Hashes for py_fcm-0.2.5.tar.gz
Algorithm Hash digest
SHA256 12244693862ccb736977adfbf00553f45e1d806ff553e38c4ff79c3ff6f79f36
MD5 bebb98cc8a12e85419c28a2a8f612072
BLAKE2b-256 cafdfe4cbf755400f395d978917ad49db93d247faf14608f693654691a449cf2

See more details on using hashes here.

File details

Details for the file py_fcm-0.2.5-py3-none-any.whl.

File metadata

  • Download URL: py_fcm-0.2.5-py3-none-any.whl
  • Upload date:
  • Size: 33.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.3

File hashes

Hashes for py_fcm-0.2.5-py3-none-any.whl
Algorithm Hash digest
SHA256 5a33998a41125daeb93fc1dcbc996e25e10df208a9ee3b3ef8b449fbc7691f81
MD5 d3e3c40e9874c1052df2882a2382e50a
BLAKE2b-256 6e8e54a0f7b0846c5586f0c092f9cb3ce00f777bc5533bf14b59c0b429ec829f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page