Skip to main content

Python Femas futures api

Project description

py_femas

中金技术api之python封装,实现接口调用。支持windows(x86/x64) linux(x64).

示例

#!/usr/bin/env python
# -*- coding: utf-8 -*-
__title__ = 'test py ctp of se'
__author__ = 'HaiFeng'
__mtime__ = '20190506'

import sys

sys.path.append('.')
from py_femas.trade import CtpTrade
from py_femas.quote import CtpQuote
from py_femas.enums import *
import time


class TestTrade(object):
    def __init__(self, addr: str, broker: str, user: str, pwd: str, appid: str, auth_code: str, proc: str):
        self.front = addr
        self.broker = broker
        self.investor = user
        self.pwd = pwd
        self.appid = appid
        self.authcode = auth_code
        self.proc = proc

        self.t = CtpTrade()
        self.t.OnConnected = self.on_connect
        self.t.OnUserLogin = lambda o, x: print('Trade logon:', x)
        self.t.OnDisConnected = lambda o, x: print(x)
        self.t.OnRtnNotice = lambda obj, time, msg: print(f'OnNotice: {time}:{msg}')
        self.t.OnErrRtnQuote = lambda obj, quote, info: None
        self.t.OnErrRtnQuoteInsert = lambda obj, o: None
        self.t.OnOrder = lambda obj, o: print(o)
        self.t.OnErrOrder = lambda obj, f, info: print(info)
        self.t.OnTrade = lambda obj, o: print(o)
        self.t.OnInstrumentStatus = lambda obj, inst, stat: None

    def on_connect(self, obj):
        self.t.ReqUserLogin(self.investor, self.pwd, self.broker, self.proc, self.appid, self.authcode)

    def run(self):
        self.t.ReqConnect(self.front)
        # self.t.ReqConnect('tcp://192.168.52.4:41205')

    def release(self):
        self.t.ReqUserLogout()


class TestQuote(object):
    """TestQuote"""

    def __init__(self, addr: str, broker: str, investor: str, pwd: str):
        """"""
        self.front = addr
        self.broker = broker
        self.investor = investor
        self.pwd = pwd

        self.q = CtpQuote()
        self.q.OnConnected = lambda x: self.q.ReqUserLogin(self.investor, self.pwd, self.broker)
        self.q.OnUserLogin = lambda o, i: self.q.ReqSubscribeMarketData('IF1911')
        self.q.OnTick = lambda q, t: print(f'{t.LastPrice}, {t.Volume}')

    def run(self):
        self.q.ReqConnect(self.front)

    def release(self):
        self.q.ReqUserLogout()


if __name__ == "__main__":
    front_trade = 'tcp://101.226.253.127:58002'
    front_quote = 'tcp://101.226.253.127:58005'
    broker = '0137'
    investor = ''
    pwd = ''
    appid = 'client_LB_1.0'
    auth_code = 'Q5V2UZ1G6AB2QC'
    proc = ''
    if investor == '':
        investor = input('invesotr:')
        pwd = input('password:')
        appid = input('appid:')
        auth_code = input('auth code:')
        proc = input('product info:')
    tt = TestTrade(front_trade, broker, investor, pwd, appid, auth_code, proc)
    tt.run()
    time.sleep(5)
    if tt.t.logined:
        tt.t.ReqOrderInsert('IF1911', DirectType.Buy, OffsetType.Open, 3885, 3)

    qq = TestQuote(front_quote, broker, investor, pwd)
    qq.run()
    #
    # time.sleep(6)
    # for inst in tt.t.instruments.values():
    #     print(inst)
    input()
    tt.release()
    qq.release()
    input()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

py_femas-0.0.4.tar.gz (5.1 MB view details)

Uploaded Source

File details

Details for the file py_femas-0.0.4.tar.gz.

File metadata

  • Download URL: py_femas-0.0.4.tar.gz
  • Upload date:
  • Size: 5.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/3.7.0

File hashes

Hashes for py_femas-0.0.4.tar.gz
Algorithm Hash digest
SHA256 af3c8802b914a5d03bed17f3cfa760cb162e03ae131949f988fb5b3647b715d7
MD5 ebb670516ae3bdcb7a4ff1b3c2c6c095
BLAKE2b-256 a2b964c321d6f0a8696da6c1808aae131c5e569f382e8642ebc2190f651d864a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page