Regression Models for Fractional Outcomes
Project description
Introduction
The package py_fractreg is a collection of functions to estimate various regression models for fractional outcomes in the range of (0, 1). In the context of credit risk, LGD (loss given default) measures the proportion of losses not recovered from a default borrower. Therefore, the fractional outcome models can be useful to estimate LGD.
Fractional Outcome Regressions
|
|-- Beta Regression
| |
| |-- beta0_reg() : Fixed Dispersion
| |
| `-- beta_reg() : Varying Dispersion
|
`-- Simplex Regression
|
|-- simplex0_reg() : Fixed Dispersion
|
`-- simplex_reg() : Varying Dispersion
Reference
WenSui Liu and Jason Xin (2014), Modeling Fractional Outcomes with SAS, Proceedings SAS Global Forum 2014, paper 1304-2014.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
py_fractreg-0.0.1.tar.gz
(1.7 kB
view details)
Built Distribution
File details
Details for the file py_fractreg-0.0.1.tar.gz
.
File metadata
- Download URL: py_fractreg-0.0.1.tar.gz
- Upload date:
- Size: 1.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/44.0.0 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3ab2c66cdd9d12cc6a2e6dbde2562bf381b8afdbc63d600902ec9f667753d5fa |
|
MD5 | 676a0621cd5679b71b3779b8b7762c30 |
|
BLAKE2b-256 | 8bf3c9cbf54f4b912af90c78ef1a6cbdcb7f4771e5c02e6cc78eadf9b317fb35 |
File details
Details for the file py_fractreg-0.0.1-py3-none-any.whl
.
File metadata
- Download URL: py_fractreg-0.0.1-py3-none-any.whl
- Upload date:
- Size: 1.6 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/44.0.0 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f99bec444074cec63dc283b3237347fb42ae37f57dde5685cac502ba055caf6a |
|
MD5 | ccf9e1c99bc7478f944013dcb36af812 |
|
BLAKE2b-256 | a7830f30675be89160e8a3f8ba1d8641483fb0f372a837aefda3f467f5599c28 |