Skip to main content

gRPC with autogen by Pydantic models

Project description

Pydantic & gRPC

py-grpcio is a microframework and high-level wrapper of grpcio to simplify work with the original library using abstractions, useful python objects and pydantic models.

Examples of use are given below and also duplicated in the example directory.


Install latest

pip install py-grpcio

Example

Models

Pydantic models that describe messages for client-server interaction.

from uuid import UUID, uuid4
from datetime import datetime

from pydantic import Field

from py_grpcio import Message

from example.server.service.enums import Names


class PingRequest(Message):
    id: UUID = Field(default_factory=uuid4)


class PingResponse(Message):
    id: UUID
    timestamp: datetime = Field(default_factory=datetime.now)


class ComplexModel(Message):
    name: Names


class ComplexRequest(Message):
    id: UUID
    model: ComplexModel


class ComplexResponse(Message):
    id: UUID
    model: ComplexModel

Server

Basic implementation of gRPC services on the server side.

You need to describe the service abstractly and duplicate this service on the client side.

from abc import abstractmethod

from py_grpcio import BaseService

from example.server.service.models import PingRequest, PingResponse, ComplexRequest, ComplexResponse


class BaseExampleService(BaseService):
    @abstractmethod
    async def ping(self: 'BaseExampleService', request: PingRequest) -> PingResponse:
        ...

    @abstractmethod
    async def complex(self: 'BaseExampleService', request: ComplexRequest) -> ComplexResponse:
        ...

Full implementation of the gRPC service with methods.

from example.server.service.base import BaseExampleService
from example.server.service.models import PingRequest, PingResponse, ComplexRequest, ComplexResponse


class ExampleService(BaseExampleService):
    async def ping(self: 'ExampleService', request: PingRequest) -> PingResponse:
        return PingResponse(id=request.id)

    async def complex(self: 'BaseExampleService', request: ComplexRequest) -> ComplexResponse:
        return ComplexResponse(**request.model_dump())

Run the ExampleService on Server.

from py_grpcio import BaseServer

from example.server.service import ExampleService


if __name__ == '__main__':
    server: BaseServer = BaseServer()
    server.add_service(service=ExampleService)
    server.run()

Note that on the client side, this class must be named the same as it is named in the full server-side implementation.

That is, if on the server we call the base class as BaseExampleService and the class with the implementation of methods as ExampleService, then on the client side the abstract service should be called ExampleService.

Client

from abc import abstractmethod

from py_grpcio import BaseService

from example.server.service.models import PingRequest, PingResponse, ComplexRequest, ComplexResponse


class ExampleService(BaseService):
    @abstractmethod
    async def ping(self: 'ExampleService', request: PingRequest) -> PingResponse:
        ...

    @abstractmethod
    async def complex(self: 'ExampleService', request: ComplexRequest) -> ComplexResponse:
        ...

Calling the ExampleService endpoints by Client.

from uuid import uuid4
from asyncio import run

from loguru import logger

from example.client.services.example.enums import Names
from example.client.services.example import (
    ExampleService, PingRequest, PingResponse, ComplexModel, ComplexRequest, ComplexResponse
)

service: ExampleService = ExampleService(host='127.0.0.1')


async def main() -> None:
    response: PingResponse = await service.ping(request=PingRequest())
    logger.info(f'ping response: {response}')

    response: ComplexResponse = await service.complex(
        request=ComplexRequest(id=uuid4(), model=ComplexModel(name=Names.NAME_1))
    )
    logger.info(f'complex response: {response}')


if __name__ == '__main__':
    run(main())

Notes

  • You can use the library on the client side even if the server is implemented differently by simply describing it as an abstract service

  • The client can also be implemented using other libraries, the server that uses py-grpcio will still be able to accept such requests

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

py_grpcio-1.3.1.tar.gz (10.0 kB view details)

Uploaded Source

Built Distribution

py_grpcio-1.3.1-py3-none-any.whl (12.5 kB view details)

Uploaded Python 3

File details

Details for the file py_grpcio-1.3.1.tar.gz.

File metadata

  • Download URL: py_grpcio-1.3.1.tar.gz
  • Upload date:
  • Size: 10.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.19

File hashes

Hashes for py_grpcio-1.3.1.tar.gz
Algorithm Hash digest
SHA256 6579474b0bbe6c25fa6eae96994c2f3aa0fb84271c8df56459c3d9bc88dd05be
MD5 eb191761e3ae58486fc78f831dd6f234
BLAKE2b-256 4e3f303dc509b3d907bb892defcab63ee23ef1c0a56ac4a4d2cca05b1166b3de

See more details on using hashes here.

File details

Details for the file py_grpcio-1.3.1-py3-none-any.whl.

File metadata

  • Download URL: py_grpcio-1.3.1-py3-none-any.whl
  • Upload date:
  • Size: 12.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.19

File hashes

Hashes for py_grpcio-1.3.1-py3-none-any.whl
Algorithm Hash digest
SHA256 5a765ab9d2c55b6e515b43d78f40a3fbfa588ab28fb04817616c9b96b23e7e40
MD5 34faaaa821cd3e41f88004d0029ea079
BLAKE2b-256 738402a8af4ed807043c586426510e183b3584aa32a95329717df4a8aca6f3ba

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page