Skip to main content

TCP framework in flavor of Netty

Project description

py-netty :rocket:

An event-driven TCP networking framework.

Ideas and concepts under the hood are build upon those of Netty, especially the IO and executor model.

APIs are intuitive to use if you are a Netty alcoholic.

Features

  • callback based application invocation
  • non blocking IO
  • recv/write is performed only in IO thread
  • adaptive read buffer
  • low/higher water mark to indicate writability (default low water mark is 32K and high water mark is 64K)
  • all platform supported (linux: epoll, mac: kqueue, windows: select)

Installation

pip install py-netty

Getting Started

Start an echo server:

from py_netty import ServerBootstrap
ServerBootstrap().bind(address='0.0.0.0', port=8080).close_future().sync()

Start an echo server (TLS):

from py_netty import ServerBootstrap
ServerBootstrap(certfile='/path/to/cert/file', keyfile='/path/to/cert/file').bind(address='0.0.0.0', port=9443).close_future().sync()

As TCP client:

from py_netty import Bootstrap, ChannelHandlerAdapter


class HttpHandler(ChannelHandlerAdapter):
    def channel_read(self, ctx, buffer):
        print(buffer.decode('utf-8'))
        

remote_address, remote_port = 'www.google.com', 80
b = Bootstrap(handler_initializer=HttpHandler)
channel = b.connect(remote_address, remote_port).sync().channel()
request = f'GET / HTTP/1.1\r\nHost: {remote_address}\r\n\r\n'
channel.write(request.encode('utf-8'))
input() # pause
channel.close()

As TCP client (TLS):

from py_netty import Bootstrap, ChannelHandlerAdapter


class HttpHandler(ChannelHandlerAdapter):
    def channel_read(self, ctx, buffer):
        print(buffer.decode('utf-8'))
        

remote_address, remote_port = 'www.google.com', 443
b = Bootstrap(handler_initializer=HttpHandler, tls=True, verify=True)
channel = b.connect(remote_address, remote_port).sync().channel()
request = f'GET / HTTP/1.1\r\nHost: {remote_address}\r\n\r\n'
channel.write(request.encode('utf-8'))
input() # pause
channel.close()

TCP port forwarding:

from py_netty import ServerBootstrap, Bootstrap, ChannelHandlerAdapter, EventLoopGroup


class ProxyChannelHandler(ChannelHandlerAdapter):

    def __init__(self, remote_host, remote_port, client_eventloop_group):
        self._remote_host = remote_host
        self._remote_port = remote_port
        self._client_eventloop_group = client_eventloop_group
        self._client = None

    def _client_channel(self, ctx0):

        class __ChannelHandler(ChannelHandlerAdapter):
            def channel_read(self, ctx, bytebuf):
                ctx0.write(bytebuf)

            def channel_inactive(self, ctx):
                ctx0.close()

        if self._client is None:
            self._client = Bootstrap(
                eventloop_group=self._client_eventloop_group,
                handler_initializer=__ChannelHandler
            ).connect(self._remote_host, self._remote_port).sync().channel()
        return self._client

    def exception_caught(self, ctx, exception):
        ctx.close()

    def channel_read(self, ctx, bytebuf):
        self._client_channel(ctx).write(bytebuf)

    def channel_inactive(self, ctx):
        if self._client:
            self._client.close()


proxied_server, proxied_port = 'www.google.com', 443
client_eventloop_group = EventLoopGroup(1, 'ClientEventloopGroup')
sb = ServerBootstrap(
    parant_group=EventLoopGroup(1, 'Acceptor'),
    child_group=EventLoopGroup(1, 'Worker'),
    child_handler_initializer=lambda: ProxyChannelHandler(proxied_server, proxied_port, client_eventloop_group)
)
sb.bind(port=8443).close_future().sync()

Event-driven callbacks

Create handler with callbacks for interested events:

from py_netty import ChannelHandlerAdapter


class MyChannelHandler(ChannelHandlerAdapter):
    def channel_active(self, ctx: 'ChannelHandlerContext') -> None:
        # invoked when channel is active (TCP connection ready)
        pass

    def channel_read(self, ctx: 'ChannelHandlerContext', msg: Union[bytes, socket.socket]) -> None:
        # invoked when there is data ready to process
        pass

    def channel_inactive(self, ctx: 'ChannelHandlerContext') -> None:
        # invoked when channel is inactive (TCP connection is broken)
        pass

    def channel_registered(self, ctx: 'ChannelHandlerContext') -> None:
        # invoked when the channel is registered with a eventloop
        pass

    def channel_unregistered(self, ctx: 'ChannelHandlerContext') -> None:
        # invoked when the channel is unregistered from a eventloop
        pass

    def channel_handshake_complete(self, ctx: 'ChannelHandlerContext') -> None:
        # invoked when ssl handshake is complete, this only applies to client side
        pass

    def channel_writability_changed(self, ctx: 'ChannelHandlerContext') -> None:
        # invoked when pending data > high water mark or < low water mark
        pass

    def exception_caught(self, ctx: 'ChannelHandlerContext', exception: Exception) -> None:
        # invoked when there is any exception raised during process
        pass

Benchmark

Test is performed using echo client/server mechanism on a 1-Core 2.0GHz Intel(R) Xeon(R) Platinum 8452Y with 4GB memory, Ubuntu 22.04. (Please see bm_echo_server.py for details.)

3 methods are tested:

  1. BIO (Traditional thread based blocking IO)
  2. Asyncio (Python built-in async IO)
  3. NIO (py-netty with 1 eventloop)

3 metrics are collected:

  1. Throughput (of each connection) to indicate overall stability
  2. Average throughput (of all connections) to indicate overall performance
  3. Ramp up time (seconds consumed after all connections established) to indicate responsiveness

Case 1: Concurrent 64 connections with 32K/s

Throughput Average Speed Ramp Up Time

Case 2: Concurrent 64 connections with 4M/s

Throughput Average Speed Ramp Up Time

Case 3: Concurrent 128 connections with 4M/s

Throughput Average Speed Ramp Up Time

Case 4: Concurrent 128 connections with 8M/s

Throughput Average Speed Ramp Up Time

Case 5: Concurrent 256 connections with 8M/s

Throughput Average Speed Ramp Up Time

CPU Usage

32K/s 2M/s

Caveats

  • No pipeline, supports only one handler FOR NOW
  • No batteries-included codecs FOR NOW
  • No pool or refcnt for bytes buffer, bytes objects are created and consumed at your disposal

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

py-netty-1.0.7.tar.gz (17.9 kB view details)

Uploaded Source

Built Distribution

py_netty-1.0.7-py3-none-any.whl (17.9 kB view details)

Uploaded Python 3

File details

Details for the file py-netty-1.0.7.tar.gz.

File metadata

  • Download URL: py-netty-1.0.7.tar.gz
  • Upload date:
  • Size: 17.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.13

File hashes

Hashes for py-netty-1.0.7.tar.gz
Algorithm Hash digest
SHA256 615260ddb4e01ec45614711f7d57b526e0851d6311fa6a641de3def6668ecc07
MD5 5366842da960c3ad280728984a15af56
BLAKE2b-256 0ce33519ff620c5474ab4aab4f120886ab7e537c1b3ae19905eacf2cf797fd45

See more details on using hashes here.

File details

Details for the file py_netty-1.0.7-py3-none-any.whl.

File metadata

  • Download URL: py_netty-1.0.7-py3-none-any.whl
  • Upload date:
  • Size: 17.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.13

File hashes

Hashes for py_netty-1.0.7-py3-none-any.whl
Algorithm Hash digest
SHA256 46b7f009d32a532496bb7d3f886a93f7bd0553fa68b52daf598912b6a06bcd70
MD5 5bf9b4499eb06cc5bde9d1a548221e69
BLAKE2b-256 729bcd829b170c9b812bc636eb18616c7f6ea4c48fa051f97b3c4e1f5adaf5b1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page