Skip to main content

TCP framework in flavor of Netty

Project description

py-netty :rocket:

An event-driven TCP networking framework.

Ideas and concepts under the hood are build upon those of Netty, especially the IO and executor model.

APIs are intuitive to use if you are a Netty alcoholic.

Features

  • callback based application invocation
  • non blocking IO
  • recv/write is performed only in IO thread
  • adaptive read buffer
  • low/higher water mark to indicate writability (default low water mark is 32K and high water mark is 64K)
  • all platform supported (linux: epoll, mac: kqueue, windows: select)

Installation

pip install py-netty

Getting Started

Start an echo server:

from py_netty import ServerBootstrap
ServerBootstrap().bind(address='0.0.0.0', port=8080).close_future().sync()

Start an echo server (TLS):

from py_netty import ServerBootstrap
ServerBootstrap(certfile='/path/to/cert/file', keyfile='/path/to/cert/file').bind(address='0.0.0.0', port=9443).close_future().sync()

As TCP client:

from py_netty import Bootstrap, ChannelHandlerAdapter


class HttpHandler(ChannelHandlerAdapter):
    def channel_read(self, ctx, buffer):
        print(buffer.decode('utf-8'))
        

remote_address, remote_port = 'www.google.com', 80
b = Bootstrap(handler_initializer=HttpHandler)
channel = b.connect(remote_address, remote_port).sync().channel()
request = f'GET / HTTP/1.1\r\nHost: {remote_address}\r\n\r\n'
channel.write(request.encode('utf-8'))
input() # pause
channel.close()

As TCP client (TLS):

from py_netty import Bootstrap, ChannelHandlerAdapter


class HttpHandler(ChannelHandlerAdapter):
    def channel_read(self, ctx, buffer):
        print(buffer.decode('utf-8'))
        

remote_address, remote_port = 'www.google.com', 443
b = Bootstrap(handler_initializer=HttpHandler, tls=True, verify=True)
channel = b.connect(remote_address, remote_port).sync().channel()
request = f'GET / HTTP/1.1\r\nHost: {remote_address}\r\n\r\n'
channel.write(request.encode('utf-8'))
input() # pause
channel.close()

TCP port forwarding:

from py_netty import ServerBootstrap, Bootstrap, ChannelHandlerAdapter, EventLoopGroup


class ProxyChannelHandler(ChannelHandlerAdapter):

    def __init__(self, remote_host, remote_port, client_eventloop_group):
        self._remote_host = remote_host
        self._remote_port = remote_port
        self._client_eventloop_group = client_eventloop_group
        self._client = None

    def _client_channel(self, ctx0):

        class __ChannelHandler(ChannelHandlerAdapter):
            def channel_read(self, ctx, bytebuf):
                ctx0.write(bytebuf)

            def channel_inactive(self, ctx):
                ctx0.close()

        if self._client is None:
            self._client = Bootstrap(
                eventloop_group=self._client_eventloop_group,
                handler_initializer=__ChannelHandler
            ).connect(self._remote_host, self._remote_port).sync().channel()
        return self._client

    def exception_caught(self, ctx, exception):
        ctx.close()

    def channel_read(self, ctx, bytebuf):
        self._client_channel(ctx).write(bytebuf)

    def channel_inactive(self, ctx):
        if self._client:
            self._client.close()


proxied_server, proxied_port = 'www.google.com', 443
client_eventloop_group = EventLoopGroup(1, 'ClientEventloopGroup')
sb = ServerBootstrap(
    parant_group=EventLoopGroup(1, 'Acceptor'),
    child_group=EventLoopGroup(1, 'Worker'),
    child_handler_initializer=lambda: ProxyChannelHandler(proxied_server, proxied_port, client_eventloop_group)
)
sb.bind(port=8443).close_future().sync()

Event-driven callbacks

Create handler with callbacks for interested events:

from py_netty import ChannelHandlerAdapter


class MyChannelHandler(ChannelHandlerAdapter):
    def channel_active(self, ctx: 'ChannelHandlerContext') -> None:
        # invoked when channel is active (TCP connection ready)
        pass

    def channel_read(self, ctx: 'ChannelHandlerContext', msg: Union[bytes, socket.socket]) -> None:
        # invoked when there is data ready to process
        pass

    def channel_inactive(self, ctx: 'ChannelHandlerContext') -> None:
        # invoked when channel is inactive (TCP connection is broken)
        pass

    def channel_registered(self, ctx: 'ChannelHandlerContext') -> None:
        # invoked when the channel is registered with a eventloop
        pass

    def channel_unregistered(self, ctx: 'ChannelHandlerContext') -> None:
        # invoked when the channel is unregistered from a eventloop
        pass

    def channel_handshake_complete(self, ctx: 'ChannelHandlerContext') -> None:
        # invoked when ssl handshake is complete, this only applies to client side
        pass

    def channel_writability_changed(self, ctx: 'ChannelHandlerContext') -> None:
        # invoked when pending data > high water mark or < low water mark
        pass

    def exception_caught(self, ctx: 'ChannelHandlerContext', exception: Exception) -> None:
        # invoked when there is any exception raised during process
        pass

Benchmark

Test is performed using echo client/server mechanism on a 1-Core 2.0GHz Intel(R) Xeon(R) Platinum 8452Y with 4GB memory, Ubuntu 22.04. (Please see bm_echo_server.py for details.)

3 methods are tested:

  1. BIO (Traditional thread based blocking IO)
  2. Asyncio (Python built-in async IO)
  3. NIO (py-netty with 1 eventloop)

3 metrics are collected:

  1. Throughput (of each connection) to indicate overall stability
  2. Average throughput (of all connections) to indicate overall performance
  3. Ramp up time (seconds consumed after all connections established) to indicate responsiveness

Case 1: Concurrent 64 connections with 32K/s

Throughput Average Speed Ramp Up Time

Case 2: Concurrent 64 connections with 4M/s

Throughput Average Speed Ramp Up Time

Case 3: Concurrent 128 connections with 4M/s

Throughput Average Speed Ramp Up Time

Case 4: Concurrent 128 connections with 8M/s

Throughput Average Speed Ramp Up Time

Case 5: Concurrent 256 connections with 8M/s

Throughput Average Speed Ramp Up Time

CPU Usage

32K/s 2M/s

Caveats

  • No pipeline, supports only one handler FOR NOW
  • No batteries-included codecs FOR NOW
  • No pool or refcnt for bytes buffer, bytes objects are created and consumed at your disposal

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

py-netty-1.0.6.tar.gz (17.9 kB view details)

Uploaded Source

Built Distribution

py_netty-1.0.6-py3-none-any.whl (17.9 kB view details)

Uploaded Python 3

File details

Details for the file py-netty-1.0.6.tar.gz.

File metadata

  • Download URL: py-netty-1.0.6.tar.gz
  • Upload date:
  • Size: 17.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.13

File hashes

Hashes for py-netty-1.0.6.tar.gz
Algorithm Hash digest
SHA256 5972fcee30eff9725679c393bbe6c172932a5dfaa559ddab8eb987e2b358d84c
MD5 5fb30fa32080fed120d57b96a008b3ce
BLAKE2b-256 20178c2bec14398c2ad3cf92e1d265e9f8866efb13333d6ef8ec92c22280aee9

See more details on using hashes here.

File details

Details for the file py_netty-1.0.6-py3-none-any.whl.

File metadata

  • Download URL: py_netty-1.0.6-py3-none-any.whl
  • Upload date:
  • Size: 17.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.13

File hashes

Hashes for py_netty-1.0.6-py3-none-any.whl
Algorithm Hash digest
SHA256 2fe4c87db2f7921eb1a1a017dd240e13c4cb0d440f80b631e89f012e0428b413
MD5 23f52a17822fac0d20c1449ec5fe90e1
BLAKE2b-256 aa9a47aebe4b610cd368ab580ad387a4e24976a5d9388e3c7046c01b874c8883

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page