Skip to main content

Package defining mathematical single-variable polynomials.

Project description

Python package defining single-variable polynomials and operations with them

PyPI version PyPI pyversions PyPI license

allexks CodeFactor codecov

Installation

pip3 install py-polynomial

Sample functionality

>>> from polynomial import Polynomial as P
>>> a = P(1, 2, 3, 4)
>>> a
Polynomial(1, 2, 3, 4)

>>> str(a)
x^3 + 2x^2 + 3x + 4

>>> b = P([4 - x for x in range(4)])  # Flexible initialization
>>> str(b)
4x^3 + 3x^2 + 2x + 1

>>> b.derivative                      # First derivative
Polynomial(12, 6, 2)

>>> str(b.derivative)
12x^2 + 6x + 2

>>> str(b.nth_derivative(2))          # Second or higher derivative
24x + 6

>>> str(a + b)                        # Addition
5x^3 + 5x^2 + 5x + 5

>>> (a + b).calculate(5)              # Calculating value for a given x
780

>>> p = P(1, 2) * P(1, 2)             # Multiplication
>>> p
Polynomial(1, 4, 4)

>>> p[0] = -4                         # Accessing coefficient by degree
>>> p
Polynomial(1, 4, -4)

>>> p[1:] = [4, -1]                   # Slicing
>>> p
Polynomial(-1, 4, -4)

>>> (p.a, p.b, p.c)                   # Accessing coefficients by name convention
(-1, 4, -4)

>>> p.a, p.c = 1, 4
>>> (p.A, p.B, p.C)
(1, 4, 4)

>>> q, remainder = divmod(p, P(1, 2)) # Division and remainder
>>> q
Polynomial(1.0, 2.0)
>>> remainder
Polynomial()

>>> p // P(1, 2)
Polynomial(1.0, 2.0)

>>> P(1, 2, 3) % P(1, 2)
Polynomial(3)

>>> P(2, 1) in P(4, 3, 2, 1)          # Check whether it contains given terms
True

>>> str(P("abc"))                     # Misc
ax^2 + bx + c
>>> from polynomial import QuadraticTrinomial, Monomial
>>> y = QuadraticTrinomial(1, -2, 1)
>>> str(y)
x^2 - 2x + 1

>>> y.discriminant
0

>>> y.real_roots
(1, 1)

>>> y.real_factors
(1, Polynomial(1, -1), Polynomial(1, -1))

>>> str(Monomial(5, 3))
5x^3

>>> y += Monomial(9, 2)
>>> y
Polynomial(10, -2, 1)

>>> str(y)
10x^2 - 2x + 1

>>> (y.a, y.b, y.c)
(10, -2, 1)

>>> (y.A, y.B, y.C)
(10, -2, 1)

>>> y.complex_roots
((0.1 + 0.3j), (0.1 - 0.3j))

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for py-polynomial, version 0.5.2
Filename, size File type Python version Upload date Hashes
Filename, size py_polynomial-0.5.2-py3-none-any.whl (13.3 kB) File type Wheel Python version py3 Upload date Hashes View
Filename, size py-polynomial-0.5.2.tar.gz (12.7 kB) File type Source Python version None Upload date Hashes View

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page