Skip to main content

```py_predpurchase```is a package for predicting online shopper purchasing intentions, containing functions to aid with data analysis processes including conducting data preprocessing as well as calculating classification metrics, cross validation scores and feature importances.The package features functions that focus mainly on analyzing the data and evaluating model performance.

Project description

py_predpurchase

codecov

py_predpurchase is a package for predicting online shopper purchasing intentions, whether an online shopper will purchase their current browsing session or not. This package contains functions to aid with the data analysis processes including conducting data preprocessing as well as calculating classification metrics, cross-validation scores and feature importances.

Full Documentation hosted on Read the Docs: https://py-predpurchase.readthedocs.io/en/latest/index.html

Installation

$ pip install py_predpurchase

Usage

py_predpurchase can be used to:

  • Apply preprocessing transformations to the data, including scaling, encoding, and passing through features as specified.
  • Calculate the cross-validation results for four common off-the-shelf models (Dummy, KNN, SVM and RandomForests)
  • Fit a given model, extract feature importances, sort in descending order, and return them as a DataFrame.
  • Calculate the classification metrics for model predictions including precision, recall, accuracy and F1 scores.

Please refer to the 'Example usage' page on the Read the Docs package documentation for a step-by-step, demonstration of each function in this package.

Below is an example usage for one of our functions, calculate_classification_metrics

import numpy as np
from py_predpurchase.function_classification_metrics import calculate_classification_metrics

# dummy data
y_true = [1,0,1,1,1,0,0,1,0,1]
y_pred = [1,1,1,0,1,0,0,1,0,0]

# using the function
calculate_classification_metrics(y_true, y_pred)

Contributing

Interested in contributing? Check out the contributing guidelines. Please note that this project is released with a Code of Conduct. By contributing to this project, you agree to abide by its terms.

License

py_predpurchase was created by Nour Abdelfattah, Sana Shams, Calvin Choi, Sai Pusuluri. It is licensed under the terms of the MIT license.

Other packages

pandas: Pandas is an extensive tool for data manipulation, py_predpurchase specializes in applying machine learning with basic data manipulation, offering functionalities to utilize off-the-shelf machine learning models. When comparing it to something like the E-Commerce Tools Package, our use of pandas along with sklearn allows us to manipulate and analyze data in a more primitive setting. The E-Commerce Tools Package is catered more towards transactional data with tools and functions for stock management and ledger items. pandas provides a simpler solution suited for the dataset used in py_predpurchase as the dataset pertains to consumer behaviour and E-Commerce marketing metrics which are less sophisticated.

scikit-learn: Scikit-learn excels in model building, but py_predpurchase extends its offerings by providing advanced tools for interpreting model outcomes. Unlike scikit-learn's broader approach, our package includes specific methods for detailing the impact of each predictor on the purchasing decision, allowing for a deeper understanding of model dynamics and more accurate validation scores. py_predpurchase benefits from these specialized insights and improves your model's predictive performance in the context of online shopping.

Credits

py_predpurchase was created with cookiecutter and the py-pkgs-cookiecutter template.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

py_predpurchase-0.2.0.tar.gz (6.4 kB view details)

Uploaded Source

Built Distribution

py_predpurchase-0.2.0-py3-none-any.whl (8.1 kB view details)

Uploaded Python 3

File details

Details for the file py_predpurchase-0.2.0.tar.gz.

File metadata

  • Download URL: py_predpurchase-0.2.0.tar.gz
  • Upload date:
  • Size: 6.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for py_predpurchase-0.2.0.tar.gz
Algorithm Hash digest
SHA256 584bd0f3dd5f4cb21c1154af10adac2e06b7e67f5bbcd2b9ccdba57b21287380
MD5 e239c05b777c82cb1bebd23cadb7031a
BLAKE2b-256 40fcd160d55a1cfaa8a0d8733497e02d583fc3429005ac0aaa6483ad020fce3c

See more details on using hashes here.

File details

Details for the file py_predpurchase-0.2.0-py3-none-any.whl.

File metadata

File hashes

Hashes for py_predpurchase-0.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 efe81e48cc7481a687b3530f8289a0dcca88234b2062a9928caa0dffe42dbcbe
MD5 48bad4ead8fda88c2164765e0f5fbae1
BLAKE2b-256 a1cf4d3ef0405998d3cacf1344bf328fcc8ccffca4de94d1b99b49f0491e198a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page