Skip to main content

utility tool that analyzes symbolic runtime of python functions

Project description

Chronos

Build Status PyPI version

About this Project

Python utility tool that takes in a function and outputs symbolic $O$ runtime.

How it works

We basically take a couple known trajectories (specifically $O(1)$, $O(n)$, $O(n^2)$, $O(n^3)$, $O(\log{n})$, $O(n\log{n})$, $O(2^n)$ and we compute a least squares regression for each trajectory. We use a loss function to aggregate the differences and then return the trajectory with the smallest loss.

Getting Started

Prerequisites

You will need numpy and tqdm in order to use chronos. These should install as dependencies by default.

pip install py-quantize-chronos

Usage

You need to pass in the name of the function you want timed into timer. The timer func will return the name of the function that models the runtime trajectory as a string. It also returns the coefficient that was outputted the least squares regression.

import chronos

def fib_exp(n):
  if n <= 1:
    return n
  return fib_exp(n-1) + fib_exp(n-2)

print("running expoential runtime function")
func, coeff = chronos.timer(fib_exp, silent=True, num=100)
print(func, coeff, "\n")

In order for the analyis to work, the function's runtime must scale with respect to the input (ie. fibonacci sequence). Hence, the function must take an integer value. If the function doesn't support this, you must wrap the function in such a manner that the input's length can me modified with an integer.

# original function
def counter(string: str):
  counter = 0
  for i in len(string):
    if i == "0":
      counter += 1
    return counter

# modified function to time
def wrapper(n: int):
  # generate random string with variable size
  letters = string.ascii_lowercase + string.digits
  inp = "".join(random.choices(letters, k=n))
  return counter(inp)

Features to Add

Right now, the model is only able to support offline aysmptotic analysis. The goals is to perform online analysis so that we can utilize an EARLY_STOP if the last k predictions have been the same.

We would also like to support function that doesn't necesarily have integer inputs.

Furthermore, we need some more robust unit testing...

Prior Attempts

In order to approximate asymptotic behavior, we use the second degree Taylor Expansion in order to estimate the trajectory of the runtime given the point. We retain a lookup table for the different asymptoics runtimes that we can expect (This included precomputing first and second derivatives). Following trajectories and their derivative functions are known:

$$ O(1), O(n), O(n^2), O(n^3), O(\log{n}), O(n\log{n}), O(2^n)$$

We can compare the second degree Taylor expansion for every known tracjectory. The formula for the second degree expansion is shown below.

$$T_2^f(x) = \sum_{n=0}^{2} \frac{f^{(n)}(x_0)}{n!} = g(x_0) + \frac{d}{dx}f(x_0)(x-x_0) + \frac{\frac{d^2}{dx^2}f(x_0)}{2}(x-x_0)^2$$

Where $g(x)$ is defined to be the measured runtime at timestep $x$.

We linearly scale the input to the test function and record its runtime. This new update is incorporated at the next time step to get a better approximation of the trajectory. Our optimization problem is defined to be as follows.

$$ \underset{f \in F}{\arg\min} \sum_1^{i=n}|T_n^f(i-i)(i)-g(i)|$$

Where $F$ is defined to be the set of all known trajectories to us, and $n$ is the number of data points we have.

HOWEVER, the problem with this attempt is that if there are large or small coefficients present in our terms, they can artiically inflate or deflate the loss function. This leads to incorrect predictions with the asympotic analysis

Helpful Links

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

py-quantize-chronos-0.1.8.tar.gz (5.0 kB view details)

Uploaded Source

Built Distribution

py_quantize_chronos-0.1.8-py3-none-any.whl (5.1 kB view details)

Uploaded Python 3

File details

Details for the file py-quantize-chronos-0.1.8.tar.gz.

File metadata

  • Download URL: py-quantize-chronos-0.1.8.tar.gz
  • Upload date:
  • Size: 5.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for py-quantize-chronos-0.1.8.tar.gz
Algorithm Hash digest
SHA256 d132e895b7847c0e8fb9f22a8f36bc4e786e1349254da242f0854390b0e49f31
MD5 5a58963b0b7ea66c1fdf7a7606e67ae7
BLAKE2b-256 0b36b1d3a364f908a15194f0608d5aaf7321d7b7250aa951fad09a0b0d2fd09e

See more details on using hashes here.

File details

Details for the file py_quantize_chronos-0.1.8-py3-none-any.whl.

File metadata

File hashes

Hashes for py_quantize_chronos-0.1.8-py3-none-any.whl
Algorithm Hash digest
SHA256 8d2dea6288611e2926399eea8e458e51aa66bb6bae45518956a352a68e73c22d
MD5 4fc118da71cf56a2ce44cdecc693f5c2
BLAKE2b-256 b68eda5bc52bac2a00fd8f83431bbbc56adbbf4cc4ddf8b7c6f154c46de2ab5d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page