Skip to main content

Temporal Graph Benchmark project repo

Project description

TGB logo

Temporal Graph Benchmark for Machine Learning on Temporal Graphs (NeurIPS 2023 Datasets and Benchmarks Track)

TGB 2.0: A Benchmark for Learning on Temporal Knowledge Graphs and Heterogeneous Graphs (preprint)

Overview of the Temporal Graph Benchmark (TGB) pipeline:

  • TGB includes large-scale and realistic datasets from five different domains with both dynamic link prediction and node property prediction tasks.
  • TGB automatically downloads datasets and processes them into numpy, PyTorch and PyG compatible TemporalData formats.
  • Novel TG models can be easily evaluated on TGB datasets via reproducible and realistic evaluation protocols.
  • TGB provides public and online leaderboards to track recent developments in temporal graph learning domain.
  • Now TGB supports temporal homogeneous graphs, temporal knowledge graphs and temporal heterogenenous graph datasets.

TGB dataloading and evaluation pipeline

To submit to TGB leaderboard, please fill in this google form

See all version differences and update notes here

Announcements

Excited to announce TGB 2.0, expanding TGB to Temporal Knowledge Graphs and Temporal Heterogeneous Graphs

See our preprint here for details. Please install locally first. We welcome your feedback and suggestions.

Excited to announce TGX, a companion package for analyzing temporal graphs in WSDM 2024 Demo Track

TGX supports all TGB datasets and provides numerous temporal graph visualization plots and statistics out of the box. See our paper: Temporal Graph Analysis with TGX and TGX website.

Excited to announce that TGB has been accepted to NeurIPS 2023 Datasets and Benchmarks Track

Thanks to everyone for your help in improving TGB! we will continue to improve TGB based on your feedback and suggestions.

Please update to version 0.9.2

version 0.9.2

Update the fix for tgbl-flight where now the unix timestamps are provided directly in the dataset. If you had issues with tgbl-flight, please remove TGB/tgb/datasets/tgbl_flightand redownload the dataset for a clean install

Pip Install

You can install TGB via pip. Requires python >= 3.9

pip install py-tgb

Links and Datasets

The project website can be found here.

The API documentations can be found here.

all dataset download links can be found at info.py

TGB dataloader will also automatically download the dataset as well as the negative samples for the link property prediction datasets.

if website is unaccessible, please use this link instead.

Running Example Methods

  • For the dynamic link property prediction task, see the examples/linkproppred folder for example scripts to run TGN, DyRep and EdgeBank on TGB datasets.
  • For the dynamic node property prediction task, see the examples/nodeproppred folder for example scripts to run TGN, DyRep and EdgeBank on TGB datasets.
  • For all other baselines, please see the TGB_Baselines repo.

Acknowledgments

We thank the OGB team for their support throughout this project and sharing their website code for the construction of TGB website.

Citation

If code or data from this repo is useful for your project, please consider citing our paper:

@article{huang2023temporal,
  title={Temporal graph benchmark for machine learning on temporal graphs},
  author={Huang, Shenyang and Poursafaei, Farimah and Danovitch, Jacob and Fey, Matthias and Hu, Weihua and Rossi, Emanuele and Leskovec, Jure and Bronstein, Michael and Rabusseau, Guillaume and Rabbany, Reihaneh},
  journal={Advances in Neural Information Processing Systems},
  year={2023}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

py_tgb-2.0.0.tar.gz (107.8 kB view details)

Uploaded Source

Built Distribution

py_tgb-2.0.0-py3-none-any.whl (149.6 kB view details)

Uploaded Python 3

File details

Details for the file py_tgb-2.0.0.tar.gz.

File metadata

  • Download URL: py_tgb-2.0.0.tar.gz
  • Upload date:
  • Size: 107.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.11.0 Linux/6.5.0-1022-azure

File hashes

Hashes for py_tgb-2.0.0.tar.gz
Algorithm Hash digest
SHA256 1b44108d2b54a083b44c21e71680ac65434254b2d0d160aef3eb2f5f3e6ad26d
MD5 28d892b872295f31c85711428d085c45
BLAKE2b-256 899f5d626c8885d0bdb519bcd438f229d62d229da32a6a73d3f149f4c2e9de26

See more details on using hashes here.

File details

Details for the file py_tgb-2.0.0-py3-none-any.whl.

File metadata

  • Download URL: py_tgb-2.0.0-py3-none-any.whl
  • Upload date:
  • Size: 149.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.11.0 Linux/6.5.0-1022-azure

File hashes

Hashes for py_tgb-2.0.0-py3-none-any.whl
Algorithm Hash digest
SHA256 4b910af8fea80408e112597d98990340536c00dd8c108dc8d46bc4448d3a649b
MD5 3ae7d68c6231ca3ad99e1fcfb3251ad1
BLAKE2b-256 6094cad884aded289d55eae03fc715ffc513c56ec988b2c8a131edf59e623878

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page