A tool to dynamically create protobuf message classes from python data schemas
Reason this release was yanked:
Accidental API breaking change
Project description
PY To Proto
This library holds utilities for converting in-memory data schema representations to Protobuf. The intent is to allow python libraries to leverage the power of protobuf
while maintaining the source-of-truth for their data in pure python and avoiding static build steps.
Why?
The protobuf
langauge is a powerful tool for defining language-agnostic, composable datastructures. Protobuf
also offers cross-language compatibility so that a given set of definitions can be compiled into numerous target programming languages. The downside is that protobuf
requires_a static built step to perform this proto
-> X
conversion step. Alternately, there are multiple ways of representing data schemas in pure python which allow a python library to interact with well-typed data objects. The downside here is that these structures can not easily be used from other programming languages. The pros/cons of these generally fall along the following lines:
Protobuf
:- Advantages
- Compact serialization
- Auto-generated
grpc
client and service libraries - Client libraries can be used from different programming languages
- Disadvantages
- Learning curve to understand the full ecosystem
- Not a familiar tool outside of service engineering
- Static compilation step required to use in code
- Advantages
- Python schemas:
- Advantages
- Can be learned quickly using pure-python documentation
- Can be written inline in pure python
- Disadvantages
- Generally, no standard serialization beyond
json
- No automated service implementations
- No/manual mechanism for usage in other programming languages
- Generally, no standard serialization beyond
- Advantages
This project aims to bring the advantages of both types of schema representation so that a given project can take advantage of the best of both:
- Define your structures in pure python for simplicity
- Dynamically create
google.protobuf.Descriptor
objects to allow forprotobuf
serialization and deserialization - Reverse render a
.proto
file from the generatedDescriptor
so that stubs can be generated in other languages - No static compiliation needed!
Supported Python Schema Types
Currently, objects can be declared using either python dataclasses
or Json TypeDef (JTD). Additional schemas can be added by subclassing ConverterBase
.
Dataclass To Proto
The following example illustrates how dataclasses
and enums
can be converted to proto:
from dataclasses import dataclass
from enum import Enum
from typing import Annotated, Dict, List, Enum
import py_to_proto
# Define the Foo structure as a python dataclass, including a nested enum
@dataclass
class Foo:
class BarEnum(Enum):
EXAM: 0
JOKE_SETTING: 1
foo: bool
bar: List[BarEnum]
# Define the Foo protobuf message class
FooProto = py_to_proto.descriptor_to_message_class(
py_to_proto.dataclass_to_proto(
package="foobar",
dataclass_=Foo,
)
)
# Declare the Bar structure as a python dataclass with a reference to the
# FooProto type
@dataclass
class Bar:
baz: FooProto
# Define the Bar protobuf message class
BarProto = py_to_proto.descriptor_to_message_class(
py_to_proto.dataclass_to_proto(
package="foobar",
dataclass_=Bar,
)
)
# Instantiate a BarProto
print(BarProto(baz=FooProto(foo=True, bar=[Foo.BarEnum.EXAM.value])))
def write_protos(proto_dir: str):
"""Write out the .proto files for FooProto and BarProto to the given
directory
"""
FooProto.write_proto_file(proto_dir)
BarProto.write_proto_file(proto_dir)
JTD To Proto
The following example illustrates how JTD schemas can be converted to proto:
import py_to_proto
# Declare the Foo protobuf message class
Foo = py_to_proto.descriptor_to_message_class(
py_to_proto.jtd_to_proto(
name="Foo",
package="foobar",
jtd_def={
"properties": {
# Bool field
"foo": {
"type": "boolean",
},
# Array of nested enum values
"bar": {
"elements": {
"enum": ["EXAM", "JOKE_SETTING"],
}
}
}
},
)
)
# Declare an object that references Foo as the type for a field
Bar = py_to_proto.descriptor_to_message_class(
py_to_proto.jtd_to_proto(
name="Bar",
package="foobar",
jtd_def={
"properties": {
"baz": {
"type": Foo.DESCRIPTOR,
},
},
},
),
)
def write_protos(proto_dir: str):
"""Write out the .proto files for Foo and Bar to the given directory"""
Foo.write_proto_file(proto_dir)
Bar.write_proto_file(proto_dir)
Similar Projects
There are a number of similar projects in this space that offer slightly different value:
jtd-codegen
: This project focuses on statically generating language-native code (includingpython
) to represent the JTD schema.py-json-to-proto
: This project aims to deduce a schema from an instance of ajson
object.pure-protobuf
: This project has a very similar aim topy-to-proto
, but it skips the intermediatedescriptor
representation and thus is not able to produce nativemessage.Message
classes.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distributions
Hashes for py_to_proto-0.3.2-py311-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | eacd491ead7cde419e7b98e5e68152566d522061ce05547114fdd71f45cdaaf0 |
|
MD5 | 34326cf31a7a08a5bc4e49ff184d1493 |
|
BLAKE2b-256 | 3e7d18947fb11272b6c98bc48253b2df88167138251fc709bc8c2efc3ed74c4b |
Hashes for py_to_proto-0.3.2-py310-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 37b6ba378abb0eb17aab1c949ec1974faac297ed4edd7aa7ea6ab9423949daa2 |
|
MD5 | 425242fb88f7d98afbd1503051e65727 |
|
BLAKE2b-256 | 0ee5c5db1894554bb698e2510a1cbc35e8337facc37530d6e3a00365838b7c2b |
Hashes for py_to_proto-0.3.2-py39-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4b68fab545a5676780c793736757a36ef80e1c75195b38761c6f8efa32520fc1 |
|
MD5 | 1c68fed3af351ed65040dea461ea9de1 |
|
BLAKE2b-256 | 2b5fbebd08826494f8ee5a4663fb626ca216b7127ede9ec3ea1f976fe4a13e9f |
Hashes for py_to_proto-0.3.2-py38-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 127053f213b09ec9c49c0ef33023cfb5db6b21993e593bb4454311490dd096f7 |
|
MD5 | fe87e38c10d8600b4de86c61c98e2bf3 |
|
BLAKE2b-256 | 724381d703974267f9c906e5df9f9c9fb744fff691edafd0f9364b289bfeba00 |
Hashes for py_to_proto-0.3.2-py37-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 67c8c09e074287954761bfd3a25255f271fab6c88aca9e9d32f998edca53d37c |
|
MD5 | 792a60c9dafe8e83f33a9dc54da4f3a8 |
|
BLAKE2b-256 | 750a9373814ed5b178c30e6c5126bb1278af9e4afdfc98962b70742fad6331e6 |