Skip to main content

Vagabond is a comprehensive library for pathfinding, navigation, and environmental understanding in robotics and automation. It provides a range of algorithms and tools to help developers create efficient and sophisticated pathfinding solutions for robots and autonomous systems.

Project description

Vagabond

Vagabond is a powerful and flexible Python library designed to simplify the implementation of various pathfinding algorithms and related operations developed by Ranit Bhowmick & Sayanti Chatterjee. Whether you're working on robotics, AI, or game development, Vagabond offers an easy-to-use interface for complex algorithms like A*, Dijkstra's, and more.

Table of Contents

  1. Installation
  2. Quick Start
  3. Core Modules
  4. Graph Visualization
  5. Examples

Installation

To install the Vagabond library, simply use pip:

pip install py-vagabond

Quick Start

Here's a quick overview of how to use the library to perform A* pathfinding:

import numpy as np
import matplotlib.pyplot as plt
from vagabond.systems import node
from vagabond.environmental import astar
import numpy as np

#example free space grids (1 is free, 0 is occupied)
free_space_grid = np.array([
    [1, 0.8, 0.5, 0.5, 0.8],
    [0.9, 0, 0, 0.8, 0.6],
    [0, 0.8, 0.9, 0.9, 0.9],
    [0.8, 0.9, 0, 0, 0.9],
    [0.6, 0.5, 0.2, 0.2, 1]
])

# Assuming robot_cell is defined
robot_cell = (0, 0)
end_cell = (4, 4)

start_node = node(value=robot_cell, name="({}, {})".format(robot_cell[0], robot_cell[1]))
end_node = node(value=end_cell, name="({}, {})".format(end_cell[0], end_cell[1]))

# Generate a random end cell
map_height, map_width = free_space_grid.shape

#! A* functions ----------------------------------------------------

# if a cell is given, return the 4-connected neighbors
# probability  high -----> cost low -----> high priority
def get_neighbors(parent_node):

    neighbors = []
    x, y = parent_node.value

    # Check if the neighbor is within the map and is free
    if x > 0 and free_space_grid[x - 1,y] != 0:
        neighbors.append(node(value=(x - 1, y), parent=parent_node, cost=(cost(parent_node, (x - 1, y)))+heuristic((x - 1, y), end_cell), name="({}, {})".format(x - 1, y)))
    if x < map_width - 1 and free_space_grid[x + 1,y] != 0:    
        neighbors.append(node(value=(x + 1, y), parent=parent_node, cost=(cost(parent_node, (x + 1, y)))+heuristic((x + 1, y), end_cell), name="({}, {})".format(x + 1, y)))
    if y > 0 and free_space_grid[x, y - 1] != 0:
        neighbors.append(node(value=(x, y - 1), parent=parent_node, cost=(cost(parent_node, (x, y - 1)))+heuristic((x, y - 1), end_cell), name="({}, {})".format(x, y - 1)))
    if y < map_height - 1 and free_space_grid[x, y + 1] != 0:
        neighbors.append(node(value=(x, y + 1), parent=parent_node, cost=(cost(parent_node, (x, y + 1)))+heuristic((x, y + 1), end_cell), name="({}, {})".format(x, y + 1)))

    return neighbors

def cost(current_cell, neighbor):

    if(current_cell.parent):
        parent = current_cell.parent.value
    else:
        parent = current_cell.value

    current = current_cell.value

    #check if direction has not changed
    direction1 = (parent[0] - current[0], parent[1] - current[1])
    direction2 = (current[0] - neighbor[0], current[1] - neighbor[1])

    if direction1 == direction2:
        penalty = 0.1
    else:
        penalty = 0.5

    return penalty + round(1 - free_space_grid[neighbor],2)

def heuristic(current_cell, end_cell):
    return abs(current_cell[0] - end_cell[0]) + abs(current_cell[1] - end_cell[1])

#! A* algorithm ----------------------------------------------------

# Create an instance of the astar class
astar_obj = astar(get_neighbors)

# Find the path
path = astar_obj.path(start_node, end_node)
astar_obj.display_path(filename="astar_path")
print("Path: ", path)

#! Plot the path ----------------------------------------------------

plt.figure()
plt.imshow(free_space_grid, cmap='gray', origin='upper')

# Plot the path as a line
path = np.array(astar_obj.get_raw())

#plot simplified dots
plt.plot(path[:, 1], path[:, 0], 'r')
plt.scatter(robot_cell[1], robot_cell[0], color='r', marker='x')
plt.scatter(end_cell[1], end_cell[0], color='g', marker='x')
plt.show()

This example initializes a simple 5x5 grid with varying cost values and calculates the optimal path from the top-left corner to the bottom-right corner using the A* algorithm.

Core Modules

Node Class

The node class is the fundamental building block of the Vagabond library. It represents each cell in your grid and contains attributes like value, parent, childs, cost, and name.

Initialization:

from vagabond.systems import node

n = node(value=(x, y), parent=None, cost=0.0, name="Node (x, y)")

Attributes:

  • value: Tuple representing the coordinates of the node.
  • parent: Reference to the parent node (used to track the path).
  • childs: List of child nodes.
  • cost: The cost to move to this node.
  • name: A string representing the name of the node.

A* Algorithm

The astar class implements the A* pathfinding algorithm, which is one of the most popular algorithms used in robotics and game development due to its efficiency and accuracy.

Initialization:

from vagabond.environmental import astar

astar_obj = astar(get_neighbors)

Key Functions:

  • path(start_node, end_node): Calculates the optimal path between the start and end nodes.
  • display_path(filename): Displays the grid, obstacles, and the computed path using Graphviz.
  • get_raw(): Returns the raw path as a list of nodes.
  • get(): Returns the path as a list of nodes.
  • add(node): Adds a node to the path.
  • remove(node): Removes a node from the path.
  • clear(): Clears the path.

Usage:

path = astar_obj.path(start_node, end_node)
raw_path = astar_obj.get_raw()

Dijkstra's Algorithm

The dijkstra class implements Dijkstra's pathfinding algorithm, which is ideal for finding the shortest path in graphs with non-negative weights.

Initialization:

from vagabond.environmental import dijkstra

dijkstra_obj = dijkstra(get_neighbors)

Key Functions:

  • path(start_node, end_node): Identifies the shortest path between two nodes using Dijkstra's algorithm.
  • display_path(filename): Displays the grid, obstacles, and the computed path using Graphviz.
  • get_raw(): Returns the raw path as a list of nodes.
  • get(): Returns the path as a list of nodes.
  • add(node): Adds a node to the path.
  • remove(node): Removes a node from the path.
  • clear(): Clears the path.

Usage:

path = dijkstra_obj.path(start_node, end_node)
raw_path = dijkstra_obj.get_raw()

Breadth-First Search

The bfs class implements the Breadth-First Search algorithm, which is useful for exploring all possible paths in a graph.

Initialization:

from vagabond.environmental import bfs

bfs_obj = bfs(get_neighbors)

Key Functions:

  • path(start_node, end_node): Finds the shortest path between two nodes using BFS.
  • display_path(filename): Displays the grid, obstacles, and the computed path using Graphviz.
  • get_raw(): Returns the raw path as a list of nodes.
  • get(): Returns the path as a list of nodes.
  • add(node): Adds a node to the path.
  • remove(node): Removes a node from the path.
  • clear(): Clears the path.

Usage:

path = bfs_obj.path(start_node, end_node)
raw_path = bfs_obj.get_raw()

Depth-First Search

The dfs class implements the Depth-First Search algorithm, which is useful for exploring all possible paths in a graph.

Initialization:

from vagabond.environmental import dfs

dfs_obj = dfs(get_neighbors)

Key Functions:

  • path(start_node, end_node): Finds the shortest path between two nodes using DFS.
  • display_path(filename): Displays the grid, obstacles, and the computed path using Graphviz.
  • get_raw(): Returns the raw path as a list of nodes.
  • get(): Returns the path as a list of nodes.
  • add(node): Adds a node to the path.
  • remove(node): Removes a node from the path.
  • clear(): Clears the path.

Usage:

path = dfs_obj.path(start_node, end_node)
raw_path = dfs_obj.get_raw()

Graph Visualization

Vagabond provides a convenient way to visualize your grid, obstacles, and computed paths using the Graphviz library.

Display Path:

astar_obj.display_path(filename="astar_path")

This function generates a visualization of the grid, obstacles, and the computed path using Graphviz. The resulting image is saved as a PNG file with the specified filename.

A* Path Output

It is also possible to display the grid and path using matplotlib:

plt.figure()
plt.imshow(free_space_grid, cmap='gray', origin='upper')

# Plot the path as a line
path = np.array(astar_obj.get_raw())

#plot the path
plt.plot(path[:, 1], path[:, 0], 'r')
plt.scatter(robot_cell[1], robot_cell[0], color='r', marker='x')
plt.scatter(end_cell[1], end_cell[0], color='g', marker='x')
plt.show()

Examples

A* Pathfinding Example

This example demonstrates how to use the A* algorithm to find the optimal path in a grid with varying cost values.

import numpy as np
import matplotlib.pyplot as plt
from vagabond.systems import node
from vagabond.environmental import astar
import numpy as np

#example free space grids (1 is free, 0 is occupied)
free_space_grid = np.array([
    [1, 0.8, 0.5, 0.5, 0.8],
    [0.9, 0, 0, 0.8, 0.6],
    [0, 0.8, 0.9, 0.9, 0.9],
    [0.8, 0.9, 0, 0, 0.9],
    [0.6, 0.5, 0.2, 0.2, 1]
])

# Assuming robot_cell is defined
robot_cell = (0, 0)
end_cell = (4, 4)

start_node = node(value=robot_cell, name="({}, {})".format(robot_cell[0], robot_cell[1]))
end_node = node(value=end_cell, name="({}, {})".format(end_cell[0], end_cell[1]))

# Generate a random end cell
map_height, map_width = free_space_grid.shape

#! A* functions ----------------------------------------------------

# if a cell is given, return the 4-connected neighbors
# probability  high -----> cost low -----> high priority
def get_neighbors(parent_node):

    neighbors = []
    x, y = parent_node.value

    # Check if the neighbor is within the map and is free
    if x > 0 and free_space_grid[x - 1,y] != 0:
        neighbors.append(node(value=(x - 1, y), parent=parent_node, cost=(cost(parent_node, (x - 1, y)))+heuristic((x - 1, y), end_cell), name="({}, {})".format(x - 1, y)))
    if x < map_width - 1 and free_space_grid[x + 1,y] != 0:    
        neighbors.append(node(value=(x + 1, y), parent=parent_node, cost=(cost(parent_node, (x + 1, y)))+heuristic((x + 1, y), end_cell), name="({}, {})".format(x + 1, y)))
    if y > 0 and free_space_grid[x, y - 1] != 0:
        neighbors.append(node(value=(x, y - 1), parent=parent_node, cost=(cost(parent_node, (x, y - 1)))+heuristic((x, y - 1), end_cell), name="({}, {})".format(x, y - 1)))
    if y < map_height - 1 and free_space_grid[x, y + 1] != 0:
        neighbors.append(node(value=(x, y + 1), parent=parent_node, cost=(cost(parent_node, (x, y + 1)))+heuristic((x, y + 1), end_cell), name="({}, {})".format(x, y + 1)))

    return neighbors

def cost(current_cell, neighbor):

    if(current_cell.parent):
        parent = current_cell.parent.value
    else:
        parent = current_cell.value

    current = current_cell.value

    #check if direction has not changed
    direction1 = (parent[0] - current[0], parent[1] - current[1])
    direction2 = (current[0] - neighbor[0], current[1] - neighbor[1])

    if direction1 == direction2:
        penalty = 0.1
    else:
        penalty = 0.5

    return penalty + round(1 - free_space_grid[neighbor],2)

def heuristic(current_cell, end_cell):
    return abs(current_cell[0] - end_cell[0]) + abs(current_cell[1] - end_cell[1])

#! A* algorithm ----------------------------------------------------

# Create an instance of the astar class
astar_obj = astar(get_neighbors)

# Find the path
path = astar_obj.path(start_node, end_node)
astar_obj.display_path(filename="astar_path")
print("Path: ", path)

#! Plot the path ----------------------------------------------------

plt.figure()
plt.imshow(free_space_grid, cmap='gray', origin='upper')

# Plot the path as a line
path = np.array(astar_obj.get_raw())

plt.plot(path[:, 1], path[:, 0], 'r')
plt.scatter(robot_cell[1], robot_cell[0], color='r', marker='x')
plt.scatter(end_cell[1], end_cell[0], color='g', marker='x')
plt.show()

Dijkstra's Pathfinding Example

This example demonstrates how to use Dijkstra's algorithm to find the shortest path in a grid with varying cost values.

import numpy as np
import matplotlib.pyplot as plt
from vagabond.systems import node
from vagabond.environmental import dijkstra
import numpy as np

#example free space grids (1 is free, 0 is occupied)
free_space_grid = np.array([
    [1, 0.8, 0.5, 0.5, 0.8],
    [0.9, 0, 0, 0.8, 0.6],
    [0, 0.8, 0.9, 0.9, 0.9],
    [0.8, 0.9, 0, 0, 0.9],
    [0.6, 0.5, 0.2, 0.2, 1]
])

# Assuming robot_cell is defined
robot_cell = (0, 0)
end_cell = (4, 4)

start_node = node(value=robot_cell, name="({}, {})".format(robot_cell[0], robot_cell[1]))
end_node = node(value=end_cell, name="({}, {})".format(end_cell[0], end_cell[1]))

# Generate a random end cell
map_height, map_width = free_space_grid.shape

#! A* functions ----------------------------------------------------

# if a cell is given, return the 4-connected neighbors
# probability  high -----> cost low -----> high priority
def get_neighbors(parent_node):

    neighbors = []
    x, y = parent_node.value

    # Check if the neighbor is within the map and is free
    if x > 0 and free_space_grid[x - 1,y] != 0:
        neighbors.append(node(value=(x - 1, y), parent=parent_node, cost=(cost(parent_node, (x - 1, y)))+heuristic((x - 1, y), end_cell), name="({}, {})".format(x - 1, y)))
    if x < map_width - 1 and free_space_grid[x + 1,y] != 0:    
        neighbors.append(node(value=(x + 1, y), parent=parent_node, cost=(cost(parent_node, (x + 1, y)))+heuristic((x + 1, y), end_cell), name="({}, {})".format(x + 1, y)))
    if y > 0 and free_space_grid[x, y - 1] != 0:
        neighbors.append(node(value=(x, y - 1), parent=parent_node, cost=(cost(parent_node, (x, y - 1)))+heuristic((x, y - 1), end_cell), name="({}, {})".format(x, y - 1)))
    if y < map_height - 1 and free_space_grid[x, y + 1] != 0:
        neighbors.append(node(value=(x, y + 1), parent=parent_node, cost=(cost(parent_node, (x, y + 1)))+heuristic((x, y + 1), end_cell), name="({}, {})".format(x, y + 1)))

    return neighbors

def cost(current_cell, neighbor):

    if(current_cell.parent):
        parent = current_cell.parent.value
    else:
        parent = current_cell.value

    current = current_cell.value

    #check if direction has not changed
    direction1 = (parent[0] - current[0], parent[1] - current[1])
    direction2 = (current[0] - neighbor[0], current[1] - neighbor[1])

    if direction1 == direction2:
        penalty = 0.1
    else:
        penalty = 0.5

    return penalty + round(1 - free_space_grid[neighbor],2)

def heuristic(current_cell, end_cell):
    return abs(current_cell[0] - end_cell[0]) + abs(current_cell[1] - end_cell[1])

#! A* algorithm ----------------------------------------------------

# Create an instance of the astar class
dijkstra_obj = dijkstra(get_neighbors)

# Find the path
path = dijkstra_obj.path(start_node, end_node)
dijkstra_obj.display_path(filename="dijkstra_path")
print("Path: ", path)

#! Plot the path ----------------------------------------------------

plt.figure()
plt.imshow(free_space_grid, cmap='gray', origin='upper')

# Plot the path as a line
path = np.array(dijkstra_obj.get_raw())

#plot simplified dots
plt.plot(path[:, 1], path[:, 0], 'r')
plt.scatter(robot_cell[1], robot_cell[0], color='r', marker='x')
plt.scatter(end_cell[1], end_cell[0], color='g', marker='x')
plt.show()

Breadth-First Search Example

This example demonstrates how to use the Breadth-First Search algorithm to explore all possible paths in a grid.

import numpy as np
import matplotlib.pyplot as plt
from vagabond.systems import node
from vagabond.environmental import bfs
import numpy as np

#example free space grids (1 is free, 0 is occupied)
free_space_grid = np.array([
    [1, 0.8, 0.5, 0.5, 0.8],
    [0.9, 0, 0, 0.8, 0.6],
    [0, 0.8, 0.9, 0.9, 0.9],
    [0.8, 0.9, 0, 0, 0.9],
    [0.6, 0.5, 0.2, 0.2, 1]
])

# Assuming robot_cell is defined
robot_cell = (0, 0)
end_cell = (4, 4)

start_node = node(value=robot_cell, name="({}, {})".format(robot_cell[0], robot_cell[1]))
end_node = node(value=end_cell, name="({}, {})".format(end_cell[0], end_cell[1]))

# Generate a random end cell
map_height, map_width = free_space_grid.shape

#! A* functions ----------------------------------------------------

# if a cell is given, return the 4-connected neighbors
# probability  high -----> cost low -----> high priority
def get_neighbors(parent_node):

    neighbors = []
    x, y = parent_node.value

    # Check if the neighbor is within the map and is free
    if x > 0 and free_space_grid[x - 1,y] != 0:
        neighbors.append(node(value=(x - 1, y), parent=parent_node, cost=(cost(parent_node, (x - 1, y)))+heuristic((x - 1, y), end_cell), name="({}, {})".format(x - 1, y)))
    if x < map_width - 1 and free_space_grid[x + 1,y] != 0:    
        neighbors.append(node(value=(x + 1, y), parent=parent_node, cost=(cost(parent_node, (x + 1, y)))+heuristic((x + 1, y), end_cell), name="({}, {})".format(x + 1, y)))
    if y > 0 and free_space_grid[x, y - 1] != 0:
        neighbors.append(node(value=(x, y - 1), parent=parent_node, cost=(cost(parent_node, (x, y - 1)))+heuristic((x, y - 1), end_cell), name="({}, {})".format(x, y - 1)))
    if y < map_height - 1 and free_space_grid[x, y + 1] != 0:
        neighbors.append(node(value=(x, y + 1), parent=parent_node, cost=(cost(parent_node, (x, y + 1)))+heuristic((x, y + 1), end_cell), name="({}, {})".format(x, y + 1)))

    return neighbors

def cost(current_cell, neighbor):

    if(current_cell.parent):
        parent = current_cell.parent.value
    else:
        parent = current_cell.value

    current = current_cell.value

    #check if direction has not changed
    direction1 = (parent[0] - current[0], parent[1] - current[1])
    direction2 = (current[0] - neighbor[0], current[1] - neighbor[1])

    if direction1 == direction2:
        penalty = 0.1
    else:
        penalty = 0.5

    return penalty + round(1 - free_space_grid[neighbor],2)

def heuristic(current_cell, end_cell):
    return abs(current_cell[0] - end_cell[0]) + abs(current_cell[1] - end_cell[1])

#! A* algorithm ----------------------------------------------------

# Create an instance of the astar class
bfs_obj = bfs(get_neighbors)

# Find the path
path = bfs_obj.path(start_node, end_node)
bfs_obj.display_path(filename="bfs_path")
print("Path: ", path)

#! Plot the path ----------------------------------------------------

plt.figure()
plt.imshow(free_space_grid, cmap='gray', origin='upper')

# Plot the path as a line
path = np.array(bfs_obj.get_raw())

#plot simplified dots
plt.plot(path[:, 1], path[:, 0], 'r')
plt.scatter(robot_cell[1], robot_cell[0], color='r', marker='x')
plt.scatter(end_cell[1], end_cell[0], color='g', marker='x')
plt.show()

Depth-First Search Example

This example demonstrates how to use the Depth-First Search algorithm to explore all possible paths in a grid.

import numpy as np
import matplotlib.pyplot as plt
from vagabond.systems import node
from vagabond.environmental import dfs
import numpy as np

#example free space grids (1 is free, 0 is occupied)
free_space_grid = np.array([
    [1, 0.8, 0.5, 0.5, 0.8],
    [0.9, 0, 0, 0.8, 0.6],
    [0, 0.8, 0.9, 0.9, 0.9],
    [0.8, 0.9, 0, 0, 0.9],
    [0.6, 0.5, 0.2, 0.2, 1]
])

# Assuming robot_cell is defined
robot_cell = (0, 0)
end_cell = (4, 4)

start_node = node(value=robot_cell, name="({}, {})".format(robot_cell[0], robot_cell[1]))
end_node = node(value=end_cell, name="({}, {})".format(end_cell[0], end_cell[1]))

# Generate a random end cell
map_height, map_width = free_space_grid.shape

#! A* functions ----------------------------------------------------

# if a cell is given, return the 4-connected neighbors
# probability  high -----> cost low -----> high priority
def get_neighbors(parent_node):

    neighbors = []
    x, y = parent_node.value

    # Check if the neighbor is within the map and is free
    if x > 0 and free_space_grid[x - 1,y] != 0:
        neighbors.append(node(value=(x - 1, y), parent=parent_node, cost=(cost(parent_node, (x - 1, y)))+heuristic((x - 1, y), end_cell), name="({}, {})".format(x - 1, y)))
    if x < map_width - 1 and free_space_grid[x + 1,y] != 0:    
        neighbors.append(node(value=(x + 1, y), parent=parent_node, cost=(cost(parent_node, (x + 1, y)))+heuristic((x + 1, y), end_cell), name="({}, {})".format(x + 1, y)))
    if y > 0 and free_space_grid[x, y - 1] != 0:
        neighbors.append(node(value=(x, y - 1), parent=parent_node, cost=(cost(parent_node, (x, y - 1)))+heuristic((x, y - 1), end_cell), name="({}, {})".format(x, y - 1)))
    if y < map_height - 1 and free_space_grid[x, y + 1] != 0:
        neighbors.append(node(value=(x, y + 1), parent=parent_node, cost=(cost(parent_node, (x, y + 1)))+heuristic((x, y + 1), end_cell), name="({}, {})".format(x, y + 1)))

    return neighbors

def cost(current_cell, neighbor):

    if(current_cell.parent):
        parent = current_cell.parent.value
    else:
        parent = current_cell.value

    current = current_cell.value

    #check if direction has not changed
    direction1 = (parent[0] - current[0], parent[1] - current[1])
    direction2 = (current[0] - neighbor[0], current[1] - neighbor[1])

    if direction1 == direction2:
        penalty = 0.1
    else:
        penalty = 0.5

    return penalty + round(1 - free_space_grid[neighbor],2)

def heuristic(current_cell, end_cell):
    return abs(current_cell[0] - end_cell[0]) + abs(current_cell[1] - end_cell[1])

#! A* algorithm ----------------------------------------------------

# Create an instance of the astar class
dfs_obj = dfs(get_neighbors)


# Find the path
path = dfs_obj.path(start_node, end_node)
dfs_obj.display_path(filename="dfs_path")
print("Path: ", path)

#! Plot the path ----------------------------------------------------

plt.figure()
plt.imshow(free_space_grid, cmap='gray', origin='upper')

# Plot the path as a line
path = np.array(dfs_obj.get_raw())

#plot simplified dots
plt.plot(path[:, 1], path[:, 0], 'r')
plt.scatter(robot_cell[1], robot_cell[0], color='r', marker='x')
plt.scatter(end_cell[1], end_cell[0], color='g', marker='x')
plt.show()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

py-vagabond-2.0.2.tar.gz (13.2 kB view details)

Uploaded Source

Built Distribution

py_vagabond-2.0.2-py3-none-any.whl (10.4 kB view details)

Uploaded Python 3

File details

Details for the file py-vagabond-2.0.2.tar.gz.

File metadata

  • Download URL: py-vagabond-2.0.2.tar.gz
  • Upload date:
  • Size: 13.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.2

File hashes

Hashes for py-vagabond-2.0.2.tar.gz
Algorithm Hash digest
SHA256 cbf5c270fbe3dd14ad214bc8312fcba747aa777e845664f5b8de2183e2ede0db
MD5 7191b815253bf1c13d96bf6ea945cb6e
BLAKE2b-256 047eaec336259151394fa862a1846f983843b2c79990c50c1721fa210a33a22a

See more details on using hashes here.

File details

Details for the file py_vagabond-2.0.2-py3-none-any.whl.

File metadata

  • Download URL: py_vagabond-2.0.2-py3-none-any.whl
  • Upload date:
  • Size: 10.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.2

File hashes

Hashes for py_vagabond-2.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 89d06943cf0295eaa2d69dbd54687257a7def96a60902615b023f720818ededd
MD5 ff9f79876fb1e0cb617550406c1a4bf4
BLAKE2b-256 7ab6de280d7da52f4f8f443f7c6b2b12c7371d4a475bfe4656658c5ae9332a18

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page