A Python Wrapper for VnCoreNLP
Project description
Table of contents
VnCoreNLP: A Vietnamese natural language processing toolkit
VnCoreNLP is a fast and accurate NLP annotation pipeline for Vietnamese, providing rich linguistic annotations through key NLP components of word segmentation, POS tagging, named entity recognition (NER) and dependency parsing. Users do not have to install external dependencies. Users can run processing pipelines from either the command-line or the API. The general architecture and experimental results of VnCoreNLP can be found in the following related papers:
- Thanh Vu, Dat Quoc Nguyen, Dai Quoc Nguyen, Mark Dras and Mark Johnson. 2018. VnCoreNLP: A Vietnamese Natural Language Processing Toolkit. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Demonstrations, NAACL 2018, pages 56-60. [.bib]
- Dat Quoc Nguyen, Dai Quoc Nguyen, Thanh Vu, Mark Dras and Mark Johnson. 2018. A Fast and Accurate Vietnamese Word Segmenter. In Proceedings of the 11th International Conference on Language Resources and Evaluation, LREC 2018, pages 2582-2587. [.bib]
- Dat Quoc Nguyen, Thanh Vu, Dai Quoc Nguyen, Mark Dras and Mark Johnson. 2017. From Word Segmentation to POS Tagging for Vietnamese. In Proceedings of the 15th Annual Workshop of the Australasian Language Technology Association, ALTA 2017, pages 108-113. [.bib]
Please CITE paper [1] whenever VnCoreNLP is used to produce published results or incorporated into other software. If you are dealing in depth with either word segmentation or POS tagging, you are also encouraged to cite paper [2] or [3], respectively.
If you are looking for light-weight versions, VnCoreNLP's word segmentation and POS tagging components have also been released as independent packages RDRsegmenter [2] and VnMarMoT [3], resepectively.
Installation
-
Python 3.4+
if using a Python wrapper of VnCoreNLP. To install this wrapper, users have to run the following command:$ pip3 install vncorenlp
A special thanks goes to Khoa Duong (@dnanhkhoa) for creating this wrapper!
-
Java 1.8+
-
File
VnCoreNLP-1.1.1.jar
(27MB) and foldermodels
(115MB) are placed in the same working folder.
Usage for Python users
Assume that the Python wrapper of VnCoreNLP is already installed via: $ pip3 install vncorenlp
Use as a service
- Run the following command:
# To perform word segmentation, POS tagging, NER and then dependency parsing
$ vncorenlp -Xmx2g <FULL-PATH-to-VnCoreNLP-jar-file> -p 9000 -a "wseg,pos,ner,parse"
# To perform word segmentation, POS tagging and then NER
# $ vncorenlp -Xmx2g <FULL-PATH-to-VnCoreNLP-jar-file> -p 9000 -a "wseg,pos,ner"
# To perform word segmentation and then POS tagging
# $ vncorenlp -Xmx2g <FULL-PATH-to-VnCoreNLP-jar-file> -p 9000 -a "wseg,pos"
# To perform word segmentation only
# $ vncorenlp -Xmx500m <FULL-PATH-to-VnCoreNLP-jar-file> -p 9000 -a "wseg"
The service is now available at http://127.0.0.1:9000
.
- Use the service in your
python
code:
from vncorenlp import VnCoreNLP
annotator = VnCoreNLP(address="http://127.0.0.1", port=9000)
# Input
text = "Ông Nguyễn Khắc Chúc đang làm việc tại Đại học Quốc gia Hà Nội. Bà Lan, vợ ông Chúc, cũng làm việc tại đây."
# To perform word segmentation, POS tagging, NER and then dependency parsing
annotated_text = annotator.annotate(text)
# To perform word segmentation only
word_segmented_text = annotator.tokenize(text)
print(annotated_text)
# JSON format
{'sentences': [[{'index': 1, 'form': 'Ông', 'posTag': 'Nc', 'nerLabel': 'O', 'head': 4, 'depLabel': 'sub'}, {'index': 2, 'form': 'Nguyễn_Khắc_Chúc', 'posTag': 'Np', 'nerLabel': 'B-PER', 'head': 1, 'depLabel': 'nmod'}, {'index': 3, 'form': 'đang', 'posTag': 'R', 'nerLabel': 'O', 'head': 4, 'depLabel': 'adv'}, {'index': 4, 'form': 'làm_việc', 'posTag': 'V', 'nerLabel': 'O', 'head': 0, 'depLabel': 'root'}, {'index': 5, 'form': 'tại', 'posTag': 'E', 'nerLabel': 'O', 'head': 4, 'depLabel': 'loc'}, {'index': 6, 'form': 'Đại_học', 'posTag': 'N', 'nerLabel': 'B-ORG', 'head': 5, 'depLabel': 'pob'}, {'index': 7, 'form': 'Quốc_gia', 'posTag': 'N', 'nerLabel': 'I-ORG', 'head': 6, 'depLabel': 'nmod'}, {'index': 8, 'form': 'Hà_Nội', 'posTag': 'Np', 'nerLabel': 'I-ORG', 'head': 6, 'depLabel': 'nmod'}, {'index': 9, 'form': '.', 'posTag': 'CH', 'nerLabel': 'O', 'head': 4, 'depLabel': 'punct'}], [{'index': 1, 'form': 'Bà', 'posTag': 'Nc', 'nerLabel': 'O', 'head': 9, 'depLabel': 'sub'}, {'index': 2, 'form': 'Lan', 'posTag': 'Np', 'nerLabel': 'B-PER', 'head': 1, 'depLabel': 'nmod'}, {'index': 3, 'form': ',', 'posTag': 'CH', 'nerLabel': 'O', 'head': 1, 'depLabel': 'punct'}, {'index': 4, 'form': 'vợ', 'posTag': 'N', 'nerLabel': 'O', 'head': 1, 'depLabel': 'nmod'}, {'index': 5, 'form': 'ông', 'posTag': 'Nc', 'nerLabel': 'O', 'head': 4, 'depLabel': 'nmod'}, {'index': 6, 'form': 'Chúc', 'posTag': 'Np', 'nerLabel': 'B-PER', 'head': 5, 'depLabel': 'nmod'}, {'index': 7, 'form': ',', 'posTag': 'CH', 'nerLabel': 'O', 'head': 1, 'depLabel': 'punct'}, {'index': 8, 'form': 'cũng', 'posTag': 'R', 'nerLabel': 'O', 'head': 9, 'depLabel': 'adv'}, {'index': 9, 'form': 'làm_việc', 'posTag': 'V', 'nerLabel': 'O', 'head': 0, 'depLabel': 'root'}, {'index': 10, 'form': 'tại', 'posTag': 'E', 'nerLabel': 'O', 'head': 9, 'depLabel': 'loc'}, {'index': 11, 'form': 'đây', 'posTag': 'P', 'nerLabel': 'O', 'head': 10, 'depLabel': 'pob'}, {'index': 12, 'form': '.', 'posTag': 'CH', 'nerLabel': 'O', 'head': 9, 'depLabel': 'punct'}]]}
print(word_segmented_text)
[['Ông', 'Nguyễn_Khắc_Chúc', 'đang', 'làm_việc', 'tại', 'Đại_học', 'Quốc_gia', 'Hà_Nội', '.'], ['Bà', 'Lan', ',', 'vợ', 'ông', 'Chúc', ',', 'cũng', 'làm_việc', 'tại', 'đây', '.']]
Use without the service
from vncorenlp import VnCoreNLP
# To perform word segmentation, POS tagging, NER and then dependency parsing
annotator = VnCoreNLP("<FULL-PATH-to-VnCoreNLP-jar-file>", annotators="wseg,pos,ner,parse", max_heap_size='-Xmx2g')
# To perform word segmentation, POS tagging and then NER
# annotator = VnCoreNLP("<FULL-PATH-to-VnCoreNLP-jar-file>", annotators="wseg,pos,ner", max_heap_size='-Xmx2g')
# To perform word segmentation and then POS tagging
# annotator = VnCoreNLP("<FULL-PATH-to-VnCoreNLP-jar-file>", annotators="wseg,pos", max_heap_size='-Xmx2g')
# To perform word segmentation only
# annotator = VnCoreNLP("<FULL-PATH-to-VnCoreNLP-jar-file>", annotators="wseg", max_heap_size='-Xmx500m')
# Input
text = "Ông Nguyễn Khắc Chúc đang làm việc tại Đại học Quốc gia Hà Nội. Bà Lan, vợ ông Chúc, cũng làm việc tại đây."
# To perform word segmentation, POS tagging, NER and then dependency parsing
annotated_text = annotator.annotate(text)
# To perform word segmentation only
word_segmented_text = annotator.tokenize(text)
Usage for Java users
Using VnCoreNLP from the command line
You can run VnCoreNLP to annotate an input raw text corpus (e.g. a collection of news content) by using following commands:
// To perform word segmentation, POS tagging, NER and then dependency parsing
$ java -Xmx2g -jar VnCoreNLP-1.1.1.jar -fin input.txt -fout output.txt
// To perform word segmentation, POS tagging and then NER
$ java -Xmx2g -jar VnCoreNLP-1.1.1.jar -fin input.txt -fout output.txt -annotators wseg,pos,ner
// To perform word segmentation and then POS tagging
$ java -Xmx2g -jar VnCoreNLP-1.1.1.jar -fin input.txt -fout output.txt -annotators wseg,pos
// To perform word segmentation
$ java -Xmx2g -jar VnCoreNLP-1.1.1.jar -fin input.txt -fout output.txt -annotators wseg
Using VnCoreNLP from the API
The following code is a simple and complete example:
import vn.pipeline.*;
import java.io.*;
public class VnCoreNLPExample {
public static void main(String[] args) throws IOException {
// "wseg", "pos", "ner", and "parse" refer to as word segmentation, POS tagging, NER and dependency parsing, respectively.
String[] annotators = {"wseg", "pos", "ner", "parse"};
VnCoreNLP pipeline = new VnCoreNLP(annotators);
String str = "Ông Nguyễn Khắc Chúc đang làm việc tại Đại học Quốc gia Hà Nội. Bà Lan, vợ ông Chúc, cũng làm việc tại đây.";
Annotation annotation = new Annotation(str);
pipeline.annotate(annotation);
System.out.println(annotation.toString());
// 1 Ông Nc O 4 sub
// 2 Nguyễn_Khắc_Chúc Np B-PER 1 nmod
// 3 đang R O 4 adv
// 4 làm_việc V O 0 root
// ...
//Write to file
PrintStream outputPrinter = new PrintStream("output.txt");
pipeline.printToFile(annotation, outputPrinter);
// You can also get a single sentence to analyze individually
Sentence firstSentence = annotation.getSentences().get(0);
System.out.println(firstSentence.toString());
}
}
See VnCoreNLP's open-source in folder src
for API details.
Experimental results
See details in papers [1,2,3] above or at NLP-progress.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file py_vncorenlp-0.0.4.tar.gz
.
File metadata
- Download URL: py_vncorenlp-0.0.4.tar.gz
- Upload date:
- Size: 6.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.23.0 setuptools/47.1.1.post20200604 requests-toolbelt/0.9.1 tqdm/4.63.0 CPython/3.7.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a6a5931b649e93457ce7bfd31b1798a0a8e4b1311323ea2d6716fef7042f3765 |
|
MD5 | d69d5ae278c1cee1605b1f44b7cdd96c |
|
BLAKE2b-256 | b0313c9107fe3198d6ac0745cf788c9633ec7ced60d509bacfd44d2cdf27f238 |