An ORM-like Python library for generating and managing gRPC proto files and pb2 files
Project description
py2proto
py2proto is a powerful Python library that simplifies the process of creating gRPC services and Protocol Buffer definitions. It automatically generates .proto files, gRPC code, and Swagger UI documentation from Python class definitions.
Features
- Automatic generation of .proto files from Python classes
- Generation of gRPC Python code
- Swagger UI generation for easy API testing and documentation
- Support for complex data types (lists, dictionaries)
- Custom output directory setting
- Built-in Swagger UI server
- Creating server and client codes for Python and JavaScript programming languages.
Installation
Install py2proto using pip:
pip install py2proto
Usage
- Import necessary modules:
from py2proto import ProtoGenerator, relation
from typing import List, Dict
- Define your message classes:
class MessageProto(ProtoGenerator):
class MessageRequest(ProtoGenerator):
message: str
number: int
class MessageResponse(ProtoGenerator):
message: str
# relation(`relation Name`, `request function`, `returnes fucntion`)
service = relation("SendMessage", "MessageRequest", "MessageResponse")
- Generate files and run Swagger UI:
if __name__ == "__main__":
if __name__ == "__main__":
# Set output directory
MessageProto.set_output_directory("outputs")
# Generate proto file
proto_file = MessageProto.generate_proto("messageservice", "message_service")
# Generate pb2 files
MessageProto.generate_pb2(proto_file)
# Generate Swagger file
swagger_file = MessageProto.generate_swagger(proto_file)
# Generate gRPC server & client files for Python and JavaScript
MessageProto.generate_grpc_files(['python', 'javascript'], proto_file, port=50051)
# Run Swagger UI
MessageProto.run_flask()
This script will generate a .proto file in the 'protos/' directory and pb2 files in the 'outputs/' directory. Finally, the output of the generated proto file will be as follows:
Detailed Function Explanations
relation(method_name: str, request: str, response: str)
Defines a gRPC service method with its request and response types.
Example:
service = relation("SendMessage", "MessageRequest", "MessageResponse")
set_output_directory(directory: str)
Sets the output directory for generated files.
Example:
MessageProto.set_output_directory("custom_output")
generate_proto(package_name: str, file_name: str) -> str
Generates a .proto file based on the defined classes.
Example:
proto_file = MessageProto.generate_proto("mypackage", "myservice")
generate_pb2(proto_file: str)
Generates Python gRPC code from the .proto file.
Example:
MessageProto.generate_pb2(proto_file)
generate_swagger(proto_file: str) -> str
Generates a Swagger JSON file for API documentation.
Example:
swagger_file = MessageProto.generate_swagger(proto_file)
run_swagger()
Starts a Flask server to serve the Swagger UI.
Example:
MessageProto.run_swagger()
generate_grpc_files(languages: List[str], proto_file: str, port: int = 50051)
Generates gRPC code for the specified languages.
Example:
MessageProto.generate_grpc_files(['python', 'javascript'], proto_file, port=50051)
Advanced Usage
You can use complex data types in your message definitions:
class ComplexProto(ProtoGenerator):
class ComplexRequest(ProtoGenerator):
list_field: List[str]
dict_field: Dict[str, int]
class ComplexResponse(ProtoGenerator):
result: List[Dict[str, str]]
service = relation("ComplexRequest", "ComplexResponse")
Multiple Services
Define multiple services in a single Proto class:
class MultiServiceProto(ProtoGenerator):
class Request1(ProtoGenerator):
field1: str
class Response1(ProtoGenerator):
result1: str
class Request2(ProtoGenerator):
field2: int
class Response2(ProtoGenerator):
result2: int
service1 = relation("Request1", "Response1")
service2 = relation("Request2", "Response2")
Why Use py2proto?
- Simplicity: Define your gRPC services using familiar Python syntax.
- Automation: Automatically generate .proto files and gRPC code.
- Documentation: Get Swagger UI documentation out of the box.
- Flexibility: Support for complex data types and multiple services.
- Time-saving: Reduce boilerplate code and manual proto file writing.
Requirements
- Python 3.6+
- grpcio
- grpcio-tools
- Flask (for Swagger UI)
Supported Data Types
py2proto supports the following Protocol Buffer data types:
- str
(string)
- int
(int32)
- float
(float)
- bool
(bool)
- bytes
(bytes)
- "int64"
(int64)
- "uint32"
(uint32)
- "uint64"
(uint64)
- "sint32"
(sint32)
- "sint64"
(sint64)
- "fixed32"
(fixed32)
- "fixed64"
(fixed64)
- "sfixed32"
(sfixed32)
- "sfixed64"
(sfixed64)
- "double"
(double)
- List[Type]
(repeated)
- Dict[KeyType, ValueType]
(map)
Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file py2proto-2.3.1.tar.gz
.
File metadata
- Download URL: py2proto-2.3.1.tar.gz
- Upload date:
- Size: 11.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ef63064e12da3bc38d29e9dd674685a07cbec28a6159f25c6960423c5e8a1990 |
|
MD5 | 88620bdecd2d0004c280d4aaf80fd848 |
|
BLAKE2b-256 | 1b6ebd1ad56756c5a356539962877f2822e56fef6bc1442447911d2b965e8dee |
File details
Details for the file py2proto-2.3.1-py3-none-any.whl
.
File metadata
- Download URL: py2proto-2.3.1-py3-none-any.whl
- Upload date:
- Size: 9.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | de614aa24be9df00f5b4fb5869850b686e0f0f87000a7b5b86a740c80012bdc3 |
|
MD5 | 7951b06064cdad337569a6a3f717fc82 |
|
BLAKE2b-256 | d81164950d73030ca03470fcbd4df223243db751e364b58f89ffa8ba07359ba4 |